Vol. 17
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-16
A Compact Low-Pass Filter with Sharp Cutoff and Low Insertion Loss Characteristic Using Novel Defected Ground Structure
By
Progress In Electromagnetics Research Letters, Vol. 17, 133-143, 2010
Abstract
In this paper, a compact stepped-impedance hairpin resonator (SIHR) low-pass filter (LPF) with an improved split-ring resonator defected ground structure (ISRR DGS) and two elliptical DGSs is presented. The proposed LPF exhibits the advantages of low insertion loss, sharp cutoff characteristic, wide stopband over the ordinary LPFs. The introduced DGSs are presented to improve the in-band and out-band characteristic. An equivalent RLC circuit model of the two kinds of DGSs is presented and analyzed. Combining with these two structures, a new SIHR LPF having 3-dB cutoff frequency of 2.5 GHz is fabricated and measured. Measured results show that the selectivity of the proposed LPF is more than 100 dB/GHz and the insertion loss is less than 0.5 dB in the passband. A wide stop-band bandwidth with 20 dB attenuation from 2.58 up to 7.5 GHz is achieved. Moreover, the occupied area is only 20×25 mm2.
Citation
Dan Xi, Ying-Zeng Yin, Le-Hu Wen, Yuannan Mo, and Yan Wang, "A Compact Low-Pass Filter with Sharp Cutoff and Low Insertion Loss Characteristic Using Novel Defected Ground Structure," Progress In Electromagnetics Research Letters, Vol. 17, 133-143, 2010.
doi:10.2528/PIERL10062501
References

1. Lim, J. S., J. S. Park, Y. T. Lee, et al. "Application of defected ground structure in reducing the size of amplifiers," IEEE Microwave Guided Wave Lett., Vol. 12, 261-263, 2002.

2. Liu, H.-W., L.-Y. Li, X.-H. Li, and S.-X. Wang, "Compact microstrip lowpass filter using asymmetric stepped-impedance hairpin resonator and slotted ground plane," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1615-1622, 2008.
doi:10.1163/156939308786390184

3. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502

4. Ahn, D., J. S. Park, C. S. Kim, Y. Qian, and T. Itoh, "A design of the low pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 49, 86-93, 2001.
doi:10.1109/22.899965

5. Yang, M. H., J. Xu, Q. Zhao, L. Peng, and G. P. Li, "Compact, broad-stopband lowpass filters using SIRS-loaded circular hairpin resonators," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901

6. Yang, M. H., J. Xu, Q. Zhao, and X. Sun, "Wide-stopband and miniarurized lowpass filters using sirs-loaded hairpin resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2385-2396, 2009.

7. Park, J. S., J. H. Kim, J. H. Lee, S. H. Kim, and S. H. Myung, "A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS low pass filter," IEEE Int. Microwave Symp. Digest, Vol. 1, 417-420, 2002.

8. Cho, J. H. and J. C. Lee, "Microstrip stepped-impedance hairpin resonator low-pass filter with defected ground structure," Microwave Opt. Technol. Lett., 405-408, 2006.
doi:10.1002/mop.21364

9. Fu, S., C. Tong, X. Li, W. Zhang, and K. Shen, "Compact miniaturized stepped-impedance lowpass filter with sharp cutoff characteristics," Microwave Opt. Technol. Lett., 2257-2258, 2009.
doi:10.1002/mop.24619

10. Wu, B., B. Li, and C. Liang, "Design of low-loss filter using novel split-ring resonator defected ground structure," Microwave Opt. Technol. Lett., Vol. 49, 288-291, 2007.
doi:10.1002/mop.22111

11. Kuo, J. T., M. J. Maa, and P. H. Lu, "Microstrip elliptic function filters with compact miniaturized hairpin resonators," Asia-Pacific Microwave Conf. Proc., Vol. 2, 860-864, 1999.

12. Garde, I., M. J. Yabar, and C. del Rio, "Sample modeling of dgs to design 1 d-pbg low-pass filters," Microwave Opt. Technol. Lett., Vol. 37, 228-232, 2003.
doi:10.1002/mop.10878

13. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of Hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603