Vol. 16
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-08-12
W-Band Microstrip-to-Waveguide Transition Using via Fences
By
Progress In Electromagnetics Research Letters, Vol. 16, 151-160, 2010
Abstract
The paper presents integrated probe for direct coupling to the WR-10 waveguide with the use of metal filled vias on both sides of the microstrip line. Design and optimization of this novel microstrip-to-waveguide transition has been performed using 3-D finite element method based software HFSS (High Frequency Structure Simulator). A back-to-back transition has been fabricated and measured between 75--110 GHz. The measured return loss is higher than 10 dB and the insertion loss for a single microstrip-to-waveguide transition is about 1.15 dB.
Citation
Rownak Shireen, Shouyuan Shi, and Dennis W. Prather, "W-Band Microstrip-to-Waveguide Transition Using via Fences," Progress In Electromagnetics Research Letters, Vol. 16, 151-160, 2010.
doi:10.2528/PIERL10061407
References

1. Reljic, B. M., "Low loss MIC/MMIC compatible microstrip to waveguide transition without a balun," Microw. Optical Tech. Lett., Vol. 50, No. 1, 107-111, Jan. 2008.
doi:10.1002/mop.23012

2. Bai, R., Y.-L. Dong, and J. Xu, "Broadband waveguide-to-microstrip antipodal finline transition without additional resonance preventer," IEEE Int. Symp. Microw. Antenna, Propagation, and EMC Tech. for Wireless Comm., 385-388, 2007.
doi:10.1109/MAPE.2007.4393629

3. Kaneda, N., Y. X. Qian, and T. Itoh, "A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2562-2567, Dec. 1999.
doi:10.1109/22.809007

4. Grabherr, W., B. Huder, and W. Menzel, "Microstrip to waveguide transition compatible with mm-wave integrated circuits ," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1842-1843, Sep. 1994.
doi:10.1109/22.310597

5. Leong, Y.-C. and S. Weinreb, "Full band waveguide-to-microstrip probe transitions," IEEE MTT-S Symp. Dig., Vol. 4, 1435-1438, 1999.

6. Nguyen, B. D., C. Migliaccio, C. Pichot, and N. Rolland, "Design of microstrip to waveguide transition in the W band suitable antenna or integrated circuits connections," Microw. Optical Tech. Lett., Vol. 47, No. 6, 518-520, Dec. 2005.
doi:10.1002/mop.21216

7. Weinreb, S., T. Gaier, R. Lai, M. Barsky, Y. C. Leong, and L. Samoska, "High-gain 150-215 GHz MMIC amplifier with integral waveguide transitions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 7, 282-284, Jul. 1999.
doi:10.1109/75.774148

8. Ponchak, G. E., D. Chun, J.-G. Yook, and L. P. B. Katehi, "The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages," IEEE Trans. Microw. Theory Tech., Vol. 23, No. 1, 88-99, Feb. 2009.