Vol. 8
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-05-13
Application of Clutter Suppression Methods to a Geostationary Weather Radar Concept
By
Progress In Electromagnetics Research Letters, Vol. 8, 115-124, 2009
Abstract
While a geostationary weather radar would enable unprecedented monitoring of hurricanes and other severe weather, surface clutter could seriously limit its performance. The large incidence angles necessary for wide-area coverage, combined with the footprint size could cause surface clutter to obscure atmospheric return up to several km above the surface. The authors describe a Doppler filtering approach to clutter suppression and show simulation results. They find that Doppler filtering can significantly reduce the surface return, bringing surface clutter to acceptable levels. The authors then consider this approach when a staggered pulse repetition frequency is used to improve the maximum unambiguous velocity. They find that a method previously developed for ground-based weather radars can be successfully applied.
Citation
Stephen L. Durden, and Simone Tanelli, "Application of Clutter Suppression Methods to a Geostationary Weather Radar Concept," Progress In Electromagnetics Research Letters, Vol. 8, 115-124, 2009.
doi:10.2528/PIERL09040910
References

1. Kozu, T., T. Kawanishi, H. Kuroiwa, M. Kojima, K. Oikawa, H. Kumagai, K. Okamoto, M. Okumura, H. Nakatsuka, and K. Nishikawa, "Development of Precipitation Radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 102-116, 2001.
doi:10.1109/36.898669

2. Tanelli, S., S. L. Durden, E. Im, K. Pak, D. Reinke, P. Partain, J. Haynes, and R. Marchand, "CloudSat's Cloud Profiling Radar after two years in orbit: Performance, external calibration, and processing ," IEEE Trans. Geosci. Remote Sensing, Vol. 46, 3560-3573, 2008.
doi:10.1109/TGRS.2008.2002030

3. Im, E., E. A. Smith, S. L. Durden, S. Tanelli, J. Huang, Y. Rahmat-Samii, and M. Lou, "Instrument concept of NEXRAD In Space (NIS) – A geostationary radar for hurricane studies," Proc. Int. Geosci. Remote Sens. Symp, 2003.

4. Bahadori, K. and Y. Rahmat-Samii, "An array-compensated spherical reflector antenna for a very large number of scanned beams," IEEE Trans. Antennas Propagat., Vol. 53, 3547-3555, 2005.
doi:10.1109/TAP.2005.858844

5. Doviak, R. J. and D. S. Zrnic, Doppler Radar and Weather Observations, 2nd Ed., Academic Press, San Diego, 1993.

6. Wu, Z.-S., J.-P. Zhang, and L.-X. Guo, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803

7. Plant, W. J. and W. C. Keller, "Evidence of Bragg scattering in microwave Doppler spectra of sea return," J. Geophys. Res., Vol. 95, 16299-16310, 1990.
doi:10.1029/JC095iC09p16299

8. Meneghini, R. and T. Kozu, Spaceborne Weather Radar, Artech House, Boston, MA, 1990.

9. Amayenc, P., "Proposal for a spaceborne dual-beam rain radar with Doppler capability," J. Atmos. Oceanic Technol., Vol. 10, 262-276, 1993.
doi:10.1175/1520-0426(1993)010<0262:PFASDB>2.0.CO;2

10. Sachidananda, M. and D. S. Zrnic, "Clutter filtering and spectral moment estimation for Doppler weather radars using staggered pulse repetition time (PRT)," J. Atmos. Oceanic Technol., Vol. 17, 323-331, 2000.
doi:10.1175/1520-0426(2000)017<0323:CFASME>2.0.CO;2

11. Sachidananda, M. and D. S. Zrnic, "An improved clutter filtering and spectral moment estimation algorithm for staggered PRT sequences ," J. Atmos. Oceanic Technol., Vol. 19, 2009.

12. Zrnic, D. S., "Simulation of weatherlike Doppler spectra and signals," J. App. Meteor., Vol. 14, 619-620, 1975.
doi:10.1175/1520-0450(1975)014<0619:SOWDSA>2.0.CO;2