Vol. 1
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-02
Analysis of Wavefunction Distribution in Quantum Well Biased Laser Diode Using Transfer Matrix Method
By
Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008
Abstract
The paper presents the faster, simpler, and accurate algorithm to solve time independent Schrodinger equation based on transfer matrix method. We can thus calculate all bound and quasi bound energy and the corresponding probability density. A central part of this paper deals with the solving of Schrodinger equation for quantum well structure. Our results show that the transfer matrix method is accurate, it is easier to implement. The increase in well width increases the FWHM from 5.4 nanometer to 9.4 nanometer, while the increase in the Aluminum concentration the FWHM decreases from 8.98 to 5.4.
Citation
Edmund Samuel, and Dyneshwar Patil, "Analysis of Wavefunction Distribution in Quantum Well Biased Laser Diode Using Transfer Matrix Method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902
References

1. Samuel, E. P. and D. S. Patil, "Effect of aluminum mole fraction and well width on the probability density spreading in GaN/AlGaN quantum well," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 8, 394, 2007.

2. Chiu, C. H., H. C. Kuo, C. E. Lee, C. H. Lin, P. C. Cheng, H. W. Huang, T. C. Lu, S. C. Wang, and K. M. Leung, "Fabrication and characteristics of thin film InGaN-GaN light emitting diodes with TiO2/SiO2 omnidirectional reflectors," Semiconductor Science and Technology, Vol. 22, 831, 2007.

3. Chen, C.-N., K.-F. Yarn, W.-J. Luo, et al. "Effects of giant optical anisotropy in R-plane GaN/AlGaN quantum wells by valence band mixing," PIERS Online, Vol. 2, 562, 2006.

4. Ahmed, I. and A. R. Baghai-Wadji, "1D canonical and perturbed quantum potential wave problem: A universal approach," PIERS Online, Vol. 3, 481, 2007.

5. Chen, C.-N., W.-C. Chien, K.-F. Yarn, S.-H. Chang, and M.-L. Hung, "Intrinsic optical anisotropy in Zinc-blende semiconductor quantum wells," Progress In Electromagnetics Research Symposium, 223, Hangzhou, China, August 22-26, 2005.

6. Brubach, J., A. Y. Silov, J. E. M. Haverkort, W. van der Vleuten, and J. H. Wolter, "Carrier capture in ultrathin InAs/GaAs quantum wells," Physical Review B, Vol. 61, 136833, 2000.

7. Peng, L.-H., C.-M. Lai, C.-W. Shih, C.-C. Chuo, and J.-I. Chyi, "Boundary effects on the optical properties of InGaN multiple quantum wells ," IEEE J. of Selected Topics in Quantum Electronics, Vol. 9, 708, 2003.

8. Baro, M., H. Chr. Kaiser, H. Neidhardt, and J. Rehberg, "Dissipative Schrodinger-Poisson systems," J. of Mathematical Physics, Vol. 45, 21, 2004.

9. Gmachl, C., D. L. Sivco, R., F. Colombelli, F. Capasso, and A. Y. Cho, "Ultra-broadband semiconductor laser," Letters to Nature, Vol. 415, 883, 2002.

10. Samuel, E. P., K. Talele, U. Zope, and D. S. Patil, "Semiclassical analysis of capture in Gallium Nitride quantum wells," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 5, 221, 2007.

11. Shwetanshumala, S. Jana and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, 65, 2006.

12. Mora-Ramos, M. E., R. Perez-Alvarez, and V. R. Velasco, "The electrostatic potential associated to interface phonon modes in Nitride single heterostructures," Progress In Electromagnetics Research Letters, Vol. 1, 27, 2008.

13. Hori, A., D. Yasunaga, A. Satake, and K. Fujiwara, "Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single quantum well light emitting diodes," J. of Applied Physics, Vol. 93, 3152, 2003.

14. Schwarz, U. T., E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, "Excitonic signature in gain and carrier induced change of refractive index spectra of (In,Al)GaN quantum well lasers," Applied Physics Letters, Vol. 85, 1475, 2004.

15. Chern, G. D., H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple quantum well spiral-shaped micropillars," Applied Physics Letters, Vol. 83, 1710, 2003.

16. Mamishev, A. V., K. S. Rajan, F. Yang, Y. Du, and M. Zahn, "Interdigital sensors and transducers," Proceedings of the IEEE, Vol. 92, 808, 2004.

17. Srivastav, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197, 2008.

18. Walpita, L. M., "Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Amer. A, Vol. 2, 595, 1985.

19. Brennan, K. E. and C. J. Summers, "Theory of resonant tunneling in a variably spaced multiquantum well structure: An airy function approach," J. Appl. Phys., Vol. 61, 614, 1987.

20. Ghatak, A. K., K. Thyagarajan, and M. R. Shenoy, "A novel numerical technique for solving the one-dimensional Schrodinger equation using matrix approach application to quantum well structures," IEEE J. Quantum Electron., Vol. 24, 1524, 1988.

21. Lu, J., B. I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a left-handed dielectric slab," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 689, 2006.

22. Gaggero-Sager, L. M., N. Moreno-Martinez, I. Rodriguez-Vargas, R. Perez-Alvarez, V. V. Grimalsky, and M. E. Mora-Ramos, "Electronic structure as a function of temperature for Si δ-doped quantum wells in GaAs," PIERS Online, Vol. 3, No. 6, 851, 2007.

23. Gaggero-Sager, L. M. and I. Rodriguez-Vargas, "p-n-p δ-doped QuantumWells in GaAs," PIERS Online, Vol. 3, No. 6, 855, 2007.

24. Chen, C.-N., K.-F. Yarn, W.-C. Chien, S.-H. Chang, and M.-L. Hung, "Interface heterobond effects in (hkl) InAs/GaSb superlattice solved by bond orbital model," Progress In Electromagnetics Research Symposium, 318, Hangzhou, China, August 22-26, 2005.

25. Jancewicz, B., "Plane electromagnetic wave in PEMC," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 647, 2006.

26. Wu, C.-J., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," Progress In Electromagnetics Research Symposium, 164, Hangzhou, China, August 22-26, 2005.