Surface Fault Detection in Pipelines Using CSRR Microwave-Based Sensor

Euclides L. Chuma¹, *, Yuzo Iano², Sergio Barcelos¹, Luis Ernesto Ynoquio Herrera¹, Laez Barbosa da Fonseca Filho¹, and Rodolfo Cruz²

Abstract—This article presents a metamaterial-based microwave sensitive sensor with a complementary split-ring resonator (CSRR) structure for nondestructive surface fault detection in pipelines. The CSRR resonator is etched in the ground plane of a microstrip line and is produced using printed circuit board technology. The novelty of the proposed sensor is its structure that allows it to be directly used for nondestructive fault detection in pipelines, based on frequency and Q-factor variations, even for faults under a coating. A measurement setup was used to test the proposed sensor in pipelines of different materials: steel, PVC, and aluminum. The sensor could detect faults of 1 mm. For a hole of 1 mm, the frequency shift was 6.10 MHz in steel, 2.62 MHz in polyvinyl chloride (PVC), and 1.70 MHz in aluminum. In some conditions, the Q-factor shift measurements were 6.72, 5.18, and 7.15 for steel, PVC, and aluminum, respectively. The proposed sensor features high sensitivity, small size, simple design, and easy fabrication.

1. INTRODUCTION

Pipeline transport is the long-distance transportation of different materials such as petroleum, natural gas, and minerals through a system of pipes — a pipeline — typically to a market area for consumption. Pipelines are made from steel or plastic tubes, and various methods are used to protect pipes from impact, abrasion, and corrosion. These methods include polyethylene coating, epoxy coating, concrete coating, and aluminizing, and coating machines [1].

Pipelines are an economical and safe means of transporting materials to meet the high demands for efficiency and reliability [2]. However, as pipeline transport has become popular in recent decades, critical accidents due to pipeline failures increase [3]. The causes of the failures can be intentional (such as vandalism or terrorism) or unintentional (such as material failure and corrosion) damages [4]. Pipeline failure generally results in environmental pollution and financial losses, particularly when the leakage is not timely detected.

There are several pipeline leak detection methods, which are based on different working principles and approaches [5], and more common methods include the use of acoustic emission [6], fiber optic sensor [7], ground penetration radar [8, 9], negative pressure wave [10], pressure point analysis [11], infrared thermography, and mass-volume balance [12].

This article presents a microwave-based method that involves using a complementary split-ring resonator (CSRR) metamaterial structure that shows a quasi-resonant behavior (in terms of frequency and Q-factor) that varies when the resonator is placed near the object under analysis.

Microwave sensors have gained importance in many research and industrial areas such as the chemical [13–15] and biomedical sectors [16–18] mainly because of their high sensitivity, robustness, and low cost.

Received 2 May 2020, Accepted 9 August 2020, Scheduled 22 August 2020
* Corresponding author: Euclides Lourenço Chuma (euclides.chuma@ieee.org).
1 Photonics Innovation Institute — iTech, Campinas-SP, Brazil. 2 University of Campinas — UNICAMP, Campinas-SP, Brazil.
In recent years, a new microwave sensing platform using the concept of metamaterials has been introduced [19, 20]. Metamaterials are artificially engineered materials that can manipulate electromagnetic waves, causing the materials to have electromagnetic properties that do not occur or are not readily available in nature [21]. Metamaterials are being studied to find their applications in material sensing in a broad spectral range, including microwaves [22], terahertz [23], and optics [24].

Microwave sensors for crack detection in metallic materials using CSRR have already been studied in other works [25–29]. However, in this work, a microwave sensitive sensor using CSRR geometry and with a new physical structure is reported for the nondestructive detection of faults in pipelines, even for faults under the pipeline coating and with pipelines of different materials: steel, polyvinyl chloride (PVC), and aluminum, and showing good fault detection.

2. THEORETICAL STUDY AND SENSOR DESIGN

The split-ring resonator (SRR) was proposed by Pendry et al. in 1999 [30], and the CSRR was proposed by Falcone et al. in 2004 [31, 32] and can have a circular or square shape [30, 33] with multiple split-ring resonators. Both the SRR and CSRR provide a good, stable frequency response. In our design, a CSRR was used instead of an SRR because the CSRR sensor does not require extra circuit area, making the proposed sensor more compact. To improve the $Q$-factor of the sensor, multiple split-ring resonators can be used [34].

The equivalent circuit model cell can still be representative in terms of suitable RLC elements by considering the distributed inductances (for CSRR) between adjacent rings [35]. The equivalent circuit model for the squared CSRR cell is shown in Fig. 1 [36].

$$f_r = \frac{1}{2\pi \sqrt{L_r(C_c + C_r)}}$$  (1)

The $Q$-factor of the resonance is

$$Q = R \sqrt{\frac{C_r + C_c}{L_r}}$$  (2)

since the $C_r$ capacitor is affected by the dielectric materials placed near the CSRR center.

Figure 1. Example of a CSRR and its equivalent circuit model.
The main parts of the proposed sensor are the CSRR on the ground plane and the transmission line on the other side of the board. The CSRR structure and the transmission line must be aligned. Fig. 2 shows the (a) dimensions of the sensor side and (b) the transmission line side, and (c) CSRR details.

![CSRR Dimensions](image)

**Figure 2.** Proposed sensor dimensions of (a) sensor side and (b) transmission line side; (c) details of CSRR.

The new physical structure proposed has an additional dielectric plate with a circular window to maintain constant the distance between the CSRR and the pipeline, in order to avoid differences during the measurements on the surface of the same pipeline. The geometry of the transmission line with the square aligned with the CSRR is also a novelty for microwave pipeline sensors and this physical structure makes the coupling between CSRR and transmission line more sensitive [38].

### 3. FABRICATION AND MEASUREMENT

The proposed sensor was designed with a Rogers RO3035 substrate with $\varepsilon = 3.5$, $\tan \delta = 0.0015$, and a thickness of 0.75 mm. The CSRR resonant frequency was 2.25 GHz without contact with the pipeline surface, and the dimensions were optimized using the full-wave simulator Ansys HFSS. The simulation of electric field distribution on the surface of the proposed sensor at the resonant frequency is illustrated in the Fig. 3.

The measured and simulated $S_{21}$ of the proposed sensor without pipeline contact are shown in Fig. 4. There is a good agreement between the simulated and measured values, and the differences are probably due to factors that were not considered in the simulation, such as the connectors for example.

A prototype has been fabricated using the photolithography process. Fig. 5 shows the proposed sensor prototype: the (a) sensor side and (b) transmission side with SMA connectors.
Figure 3. Simulated $E$ field and $H$ field on the surface of the proposed sensor.

Figure 4. Measured and simulated $S_{21}$ of the proposed sensor.

Figure 5. Prototype of the proposed sensor: (a) sensor side and (b) transmission line side.

Figure 6. Diagram of test setup.
The measurement setup was built using an HP 8714B vector network analyzer (VNA) connected to the sensor to obtain the $S$-parameters, magnitude, and $Q$-factor in terms of frequency. Fig. 6 shows the diagram of the test setup.

A special support was used to hold the proposed sensor in a fixed position while the pipeline samples were moved using a precision XY stage. The whole setup can be seen in Fig. 7, and Fig. 8 shows the details of sensor and pipeline sample in the precision XY stage.

**Figure 7.** Complete measurement setup.

**Figure 8.** Details of sensor and pipeline sample in the precision XY stage.

**Figure 9.** Pipeline samples used in measurements.
details of the sensor and pipeline sample in the precision XY stage.

The pipeline samples used for the measurements are as follows: (a) steel with 42 mm outer diameter, 105 mm length, and 7.5 mm thickness; (b) PVC with 40 mm outer diameter, 105 mm length, and 2.5 mm thickness; (c) aluminum with 38.5 mm outer diameter, 105 mm length, and 1 mm thickness.

To validate the sensitivity of the sensor, three holes were drilled in each pipeline sample: 3 mm, 2 mm, and 1 mm diameters. All pipeline samples were wrapped with an adhesive vinyl polymer with 0.1 mm thickness to verify if the sensor can detect faults, even when the fault is under a coating. Fig. 9 shows the pipeline samples used in the measurements.

4. RESULTS

The transmission responses ($S_{21}$) were measured with a VNA, and the resonant frequency and $Q$-factor at each position along the line with the pipeline holes were taken.

![Figure 10](image)

Figure 10. Frequency variation along the line with the hole in steel pipeline.

![Figure 11](image)

Figure 11. $Q$-factor variation along the line with the hole in steel pipeline.
The resonant frequencies were observed to shift toward higher frequencies when the sensor was positioned over the holes, and the same trend occurred for the $Q$-factor. This shift agrees with the results predicted by numerical and simulation methods in other works [39, 40]. Figs. 10–15 show the results of the frequencies and $Q$-factor, which shifted as a function of the position along the line where the pipeline holes are located.

In the aluminum pipeline, the sensor presented its highest frequency variation (29.74 MHz, 24.73 MHz, and 1.70 MHz for 3 mm, 2 mm, and 1 mm holes, respectively) and $Q$-factor (12.58, 8.83, and 7.15 for 3 mm, 2 mm, and 1 mm holes, respectively) when positioned under the holes.

With the steel pipeline, the sensor presented a frequency variation (19.60 MHz, 14.45 MHz, and 6.10 MHz for 3 mm, 2 mm, and 1 mm holes, respectively) and $Q$-factor (14.77, 10.72, and 6.72 for 3 mm, 2 mm, and 1 mm holes, respectively) when positioned under the holes.

For the PVC pipeline, the sensor presented a frequency variation (7.68 MHz, 4.30 MHz, and 2.62 MHz for 3 mm, 2 mm, and 1 mm holes, respectively) and $Q$-factor (7.73, 6.24, and 5.18 for 3 mm, 2 mm, and 1 mm holes, respectively) when positioned under the holes.

In the resume, to the proposed sensor, the aluminum pipeline shows the maximum frequency variation, the PVC a lower frequency variation, and the steel pipeline shows an intermediate variation. The $Q$ factor is not as variable as frequency.
Therefore, according to the measurements performed, the sensor can detect 1 mm faults in pipelines even when the fault is under a coating.

Other microwave sensors for crack and fault detection using CSRR were proposed in the other works [25–29]. However, the proposed sensor of this article shows an ability to detect faults in non-planar surfaces (pipeline) and even under coatings because of its new physical structure.
5. CONCLUSIONS

The sensing mechanism of the proposed CSRR microwave-based sensor is based on measuring the insertion loss ($S_{21}$) between two ports connected through a microstrip line, which excites the CSRR sensing element. The sensor was fabricated using inexpensive and readily available printed circuit board technology.

The proposed CSRR microwave-based sensor works in a frequency of around 2.25 GHz and can detect faults of 1 mm in pipelines of several materials even when the fault is under a coating.

The proposed sensor presents high sensitivity, small dimensions, simple design, and easy fabrication. Therefore, it is a good choice for field measurements, which is a common situation for pipeline applications.

REFERENCES


