Vol. 111
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-08
MmWave /THz Reconfigurable Ultra-Wideband (UWB) Microstrip Antenna
By
Progress In Electromagnetics Research C, Vol. 111, 207-224, 2021
Abstract
The concept of ultra-wideband (UWB) reconfigurable mmWave/THz microstrip antenna with a newfangled gold radiating patch with two PIN diodes installed on a benzocyclobutene (BCB) polymer is presented. The reconfigurable types of the proposed antenna are frequencies, bandwidths (BWs), and beams reconfigurations. This reconfigurable antenna was designed and simulated with the time-domain based on a FIT solver at the CST MWS solver, while the comparison was with the frequency-domain based onthe FEM solver at the CST MWS solver. The simulation results obtained from both solvers were in fair agreement, supporting the proposed antenna design. These antennas may be used in cellular communication at mmWave/THz band for beyond 5G.
Citation
Uri Nissanov, and Ghanshyam Singh, "MmWave /THz Reconfigurable Ultra-Wideband (UWB) Microstrip Antenna," Progress In Electromagnetics Research C, Vol. 111, 207-224, 2021.
doi:10.2528/PIERC21012208
References

1. Jha, K. R. and G. Singh, Terahertz Planar Antennas for Next Generation Communication, Springer International Publishing Switzerland, 2014.
doi:10.1007/978-3-319-02341-0

2. Tekbiyik, K., A. R. Ekti, G. K. Kurt, and A. Gorcin, "Terahertz band communication systems: Challenges, novelties and standardization efforts," ELSEVIER Physical Communication, Vol. 35, No. 100700, 1-18, May 2019.

3. Akyildiz, I. F., C. Han, and S. Nie, "Combating the distance problem in the millimeter-wave and terahertz frequency bands," IEEE Communications Magazine, Vol. 56, No. 6, 102-108, June 2018.
doi:10.1109/MCOM.2018.1700928

4. Han, C. and Y. Chen, "Propagation modeling for wireless communications in the terahertz band," IEEE Communications Magazine, Vol. 56, No. 6, 96-101, June 2018.
doi:10.1109/MCOM.2018.1700898

5. Schneider, T., A. Wiatrek, S. Preobler, M. Grigat, and R. P. Braun, "Link budget analysis for terahertz fixed wireless links," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 2, 250-256, March 2012.
doi:10.1109/TTHZ.2011.2182118

6. Zhao, J., "A survey of reconfigurable intelligent surfaces: Towards 6G wireless communication networks with massive MIMO 2.0," arXiv:1907.04789, 1-7, July 2019.

7. Luo, Y., Q. Zeng, X. Yan, T. Jiang, R. Yang, J. Wang, Y. Wu, Q. Lu, and X. Zhang, "A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna," WILEY Periodicals Microwave and Optical Technology Letters, Vol. 61, No. 12, 2266-2672, December 2019.

8. Bansal, G., A. Marwaha, and A. Singh, "A graphene-based multiband antipodal Vivaldi nanoantenna for UWB applications," Springer Nature Journal of Computational Electronics 19, 709-718, February 2020.
doi:10.1007/s10825-020-01460-2

9. Wang, C. L., Y. Q. Wang, H. Hu, D. J. Liu, D. L. Gao, and L. Gao, "Reconfigurable sensor and nanoantenna by graphene-tuned Fano resonance," OSA Optics Express, Vol. 27, No. 24/25, 35925-35935, November 2019.

10. Chen, Z. N., Handbook of Antenna Technologies, Springer Science, September 2016.
doi:10.1007/978-981-4560-44-3

11. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, No. 7, 2250-2261, July 2012.
doi:10.1109/JPROC.2012.2188249

12. Jin, J., Z. Cheng, J. Chen, T. Zhou, C. Wu, and C. Xu, "Reconfigurable terahertz Vivaldi antenna based on hybrid graphene-metal structure," WILEY RF and Microwave Computer-Aided Engineering, 1-8, January 2020.

13. Hosseininejad, S. E., M. Neshat, R. Faraji-Dana, S. Abadal, M. C. Lemme, P. H. Bolivar, E. Alarcon, and A. Cabellos-Aparicio, "Terahertz dielectric resonator antenna coupled to graphene plasmonic dipole," IET 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-5, 2018.

14. Dong, Y., P. Liu, D. Yu, G. Li, and F. Tao, "Dualband reconfigurable terahertz patch antenna with graphene-stack-based backing cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1541-1544, February 2016.
doi:10.1109/LAWP.2016.2533018

15. Sun, L., B. Li, M. Wu, and X. Lv, "A 1-bit 220 GHz reconfigurable reflectarray," IEEE 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2019), 1-2, Guangzhou, China, May 19–22, 2019.

16. Kushwaha, R. K. and P. Karuppanan, "Parasitic-coupled high-gain graphene antenna employed on PBG dielectric grating substrate for THz applications," WILEY Microwave Optical Technology Letter, 1-9, 2019.

17. Usman, M., S. Tanoli, F. Khan, W.-U.-R. Khan, S. M. Umar, and S. Ullah, "Pattern reconfigurable two element printed patch antenna for THz wireless applications," IEEE 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET2020), 1-7, Sukkur, Pakistan, January 29–30, 2020.

18. Varshney, G., "Reconfigurable graphene antenna for THz applications: A mode conversion approach," IOP Publishing Nanotechnology, Vol. 31, No. 13, 1-16, January 2020.

19. Yao, W.-L., X.-G. Guo, Y.-M. Zhu, and P. Li, "Terahertz beam reconfigurable micro-strip Quasi-Yagi-Uda antenna based on monolayer graphene," Springer Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 39, No. 1, 39-46, February 2020.

20. Krid, H. B., Z. Houaneb, and H. Zairi, "Reconfigurable graphene annular ring antenna for medical and imaging applications," Progress In Electromagnetics Research M, Vol. 89, 53-62, 2020.
doi:10.2528/PIERM19110803

21. Dash, S. and A. Patnaik, "Behavior of graphene-based planar antenna at microwave and terahertz frequency," ELSEVIER Photonics, and Nanostructures — Fundamentals and Applications, Vol. 40, 1-13, April 2020.

22. Parchin, N. O., H. J. Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, "Reconfigurable antennas: Switching techniques — A survey," IMDP Electronics, Vol. 9, No. 36, 1-14, May 2020.

23. Tanaka, Y., H. Uda, H. Hayashi, H. Ueda, and M. Usui, "A 76–77 GHz high isolation GaAs PIN-diode switch MMIC," R&D Review of Toyota CRDL, Vol. 37, No. 2, 19-26, May 2002.

24. Bondarik, A. and D. Sjoberg, "Pattern reconfigurable wideband stacked microstrip patch antenna for 60 GHz," Springer International Journal of Antennas and Propagation, 1-12, May 2016.

25. Borgia, A., New materials and technologies for compact antennas and circuits at millimeter frequency, Ph.D. thesis, Electrical and Electronics Engineer, 2010.

26. Woehrmann, M. and M. Toepper, "Polymerization of thin film polymers," INTECH Open Science, 113-138, September 2012.

27. Su, T., W. Men, Z. Wang, L. Xuan, and W. Zhao, "POSS-benzocyclobutene (POSS-BCB) resin: A hybrid thermosetting material with high thermal stability and a lowdielectric constant," SAGE High-Performance Polymers, 1-7, November 2017.

28. Huang, C., L. Pan, R. Liu, and Z. Wang, "Thermal and electrical properties of BCB-liner through-silicon vias," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 12, 1936-1946, December 2014.
doi:10.1109/TCPMT.2014.2363659

29. Nissanov (Nissan), U., G. Singh, E. Gelbart, and N. Kumar, "Highly directive microstrip array antenna with FSS for future generation cellular communication at THz band," Springer Nature Wireless Personal Communications, 1-20, January 2021.

30., https://www.3ds.com/products-services/simulia/products/cst-studio-suite.

31., http://www.pcb-tecnomec.com.