Vol. 111
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-13
Design and Analysis of Rectangular Spiral Nano-Antenna for Solar Energy Harvesting
By
Progress In Electromagnetics Research C, Vol. 111, 25-34, 2021
Abstract
Recently, optical nano-antennas (NAs) have been introduced as an alternative approach for photovoltaics devices in solar power harvesting application. In this work, we introduce a new modification to the conventional Archimedean spiral NA to improve its radiation/harvesting efficiency and directivity. The proposed design is a rectangular spiral NA of two tip-to-tip opposing arms which are separated by an air gap. The reported design performance is investigated in terms of the radiation efficiency, directivity, polarization, radiation pattern and total harvesting efficiency. The numerical study is carried out using the finite integration technique (FIT) within the wavelength range 300-1600 nm. The presented design offers a maximum radiation efficiency of 88% in free space and 97.9% on top of silicon dioxide (SiO2) substrate at a wavelength of 500 nm where the maximum radiation of the sun occurs. In addition, the proposed design has a maximum directivity of 10.8 in free space which is increased to 19.1 on top of a substrate at 500 nm. It is found that the suggested rectangular design shows an enhancement in the radiation efficiency and directivity over the counterpart Archimedean nano-spiral antenna by 10% and 208%, respectively. The proposed rectangular design introduces total harvesting efficiencies of 96.2%, 98.1% in free space and on the substrate, respectively. Moreover, the effect of round edges that may appear in the fabrication process is also considered.
Citation
Fatma Moawad Abdel Hamied, Korany Mahmoud, Mohamed Hussein, and Salah S. A. Obayya, "Design and Analysis of Rectangular Spiral Nano-Antenna for Solar Energy Harvesting," Progress In Electromagnetics Research C, Vol. 111, 25-34, 2021.
doi:10.2528/PIERC21011206
References

1. Joshi, S. and G. Moddel, "Rectennas at optical frequencies: How to analyze the response?," Journal of Applied Physics, Vol. 118, No. 8, 084503, 2015.
doi:10.1063/1.4929648

2. Bagher, A. M., M. M. A. Vahid, and M. Mohsen, "Types of solar cells and application," American Journal of Optics and Photonics, Vol. 3, No. 5, 94-113, 2015.
doi:10.11648/j.ajop.20150305.17

3. Eldin, A. H., M. Refaey, and A. Farghly, "A review on photovoltaic solar energy technology and its efficiency," 17th International Middle-East Power System Conference (MEPCON’15), at Mansoura University, Egypt, 1-7, 2015.

4. Sabaawi, A. M., C. C. Tsimenidis, and B. S. Sharif, "Analysis and modeling of infrared solar rectennas," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 3, 9000208-9000208, 2013.
doi:10.1109/JSTQE.2012.2227686

5. Moddel, G. and S. Grover, Rectenna Solar Cells, Springer, 2013.
doi:10.1007/978-1-4614-3716-1

6. Mescia, L. and A. Massaro, "New trends in energy harvesting from earth long-wave infrared emission," Advances in Materials Science and Engineering, Vol. 2014, 2014.

7. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, 2011.
doi:10.1109/JPHOTOV.2011.2160489

8. Di Garbo, C., P. Livreri, and G. Vitale, "Review of infrared nanoantennas for energy harvesting," International Conference on Modern Electrical Power Engineering (ICMEPE-2016), 2016.

9. Zhu, Z., S. Joshi, and G. Moddel, "High performance room temperature rectenna IR detectors using graphene geometric diodes," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, No. 6, 70-78, 2014.
doi:10.1109/JSTQE.2014.2318276

10. Gadalla, M. N., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 4270, 2014.

11. Vandenbosch, G. A. and Z. Ma, "Upper bounds for the solar energy harvesting efficiency of nano-antennas," Nano Energy, Vol. 1, No. 3, 494-502, 2012.
doi:10.1016/j.nanoen.2012.03.002

12. Yan, S., B. Tumendemberel, X. Zheng, V. Volskiy, G. A. Vandenbosch, and V. V. Moshchalkov, "Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications," Solar Energy, Vol. 157, 259-262, 2017.
doi:10.1016/j.solener.2017.08.035

13. Hussein, M., N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, "Design of flower-shaped dipole nano-antenna for energy harvesting," IET Optoelectronics, Vol. 8, No. 4, 167-173, 2014.
doi:10.1049/iet-opt.2013.0108

14. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, A. Heikal, M. Abd-Elrazzak, and S. Obayya, "Optimized tapered dipole nanoantenna as efficient energy harvester," Optics Express, Vol. 24, No. 14, A1107-A1122, 2016.
doi:10.1364/OE.24.0A1107

15. Sallam, M. O., G. A. Vandenbosch, G. G. Gielen, and E. A. Soliman, "Novel wire-grid nano-antenna array with circularly polarized radiation for wireless optical communication systems," Journal of Lightwave Technology, Vol. 35, No. 21, 4700-4706, 2017.
doi:10.1109/JLT.2017.2751674

16. Zhao, H., H. Gao, T. Cao, and B. Li, "Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna," Optics Express, Vol. 26, No. 2, A178-A191, 2018.
doi:10.1364/OE.26.00A178

17. Elsaid, M., K. R. Mahmoud, M. F. O. Hameed, S. Obayya, and M. Hussein, "Broadband directional rhombic nanoantenna for optical wireless communications systems," JOSA B, Vol. 37, No. 4, 1183-1189, 2020.
doi:10.1364/JOSAB.383458

18. Ranga, R., Y. Kalra, and K. Kishor, "“Petal shaped nanoantenna for solar energy harvesting," Journal of Optics, Vol. 22, No. 3, 035001, 2020.

19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

20. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
doi:10.1115/1.4000577

21. Wei, C., S. P. Lewis, E. Mele, and A. M. Rappe, "Reciprocity theorems and pseudoelectric fields for ab initio force calculations," Physical Review B, Vol. 55, No. 23, 15356, 1997.
doi:10.1103/PhysRevB.55.15356

22. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 2012.

23. Obayya, S., N. F. F. Areed, M. F. O. Hameed, and M. H. Abdelrazik, "Optical nano-antennas for energy harvesting," Innovative Materials and Systems for Energy Harvesting Applications, 26-62, IGI Global, 2015.

24. Soliman, E. A., M. O. Sallam, and G. A. Vandenbosch, "Plasmonic grid array of gold nanorods for point-to-point optical communications," Journal of Lightwave Technology, Vol. 32, No. 24, 4898-4904, 2014.
doi:10.1109/JLT.2014.2369493

25. Costa, J. R. and J. Guterman, "Introduction to antenna and near-field simulation in CST microwave studio software," IEEE Communication Society, Portugal Chapter, 2010.

26. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique — Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 79-80, 2001.
doi:10.1163/156939301X00661

27. "C. S. T. Studio Suite,", in ed: https://www.cst.com, 2016.
doi:10.1163/156939301X00661

28. Paul, L. C., M. S. Hosain, S. Sarker, M. H. Prio, M. Morshed, and A. K. Sarkar, "The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna," American Journal of Networks and Communications, Vol. 4, No. 3, 54-58, 2015.
doi:10.11648/j.ajnc.20150403.16