Vol. 110
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-19
Dual Coaxial Probes in Transmission Inserted by Dielectric with Two Different Thicknesses to Extract the Material Complex Relative Permittivity: Discontinuity Impacts
By
Progress In Electromagnetics Research C, Vol. 110, 67-80, 2021
Abstract
After a thorough investigation, this paper introduces a novel and simple radiofrequency material characterization technique. For this study's purposes, two probes were developed and separated by the sample under test (SUT) with an inhomogeneous test cell. Furthermore, the discontinuity impacts at the probe, SUT interfaces, were also studied. The investigation uses the transmission process through the principle of two different SUT thicknesses to measure its relative permittivity and loss tangent. The technique is based on using the lumped elements of an equivalent circuit of the entire test cell and covers 1 MHz-2 GHz. With the SUT, placed between two metal probes and another metallization, placed under its thickness on an opposite side to improve the loss tangent acquisition level, the cascading chain matrix (CCM) is used to get the final parameters. The thickness changing makes it possible to overcome the contact interface effects probe-sample. A mathematical model has also been presented through the fitting procedure. The new technique has been validated with three materials: Rogers RO4003C, FR-4 HTG-175, and Alumina 99.6%. The SUT complex relative permittivity extraction makes the new approach suitable for the telecommunication industry and many others. The method is also ideal for materials with thickness sizing up to 3 mm around.
Citation
Franck Moukanda Mbango, Fabien Ndagijimana, and Aubin Lauril Lomanga Okana, "Dual Coaxial Probes in Transmission Inserted by Dielectric with Two Different Thicknesses to Extract the Material Complex Relative Permittivity: Discontinuity Impacts," Progress In Electromagnetics Research C, Vol. 110, 67-80, 2021.
doi:10.2528/PIERC21010403
References

1. Lee, C.-K., J. McGhee, C. Tsipogiannis, S. Zhang, D. Cadman, A. Goulas, T. Whittaker, R. Gheisari, D. Engstrom, and J. (Yiannis) Var, "Evaluation of microwave characterization methods for additively manufactured materials," Designs, Vol. 3, 47, 2019.
doi:10.3390/designs3040047

2. Takach, A. A., F. M. Mbango, F. Ndagijimana, M. Al-Husseini, and J. Jomaah, "Two-line technique for dielectric material characterization with application in 3D-printing filament electrical parameters extraction," Progress In Electromagnetics Research M, Vol. 85, 195-207, 2019.
doi:10.2528/PIERM19071702

3. Lountala, M. G., F. M. Mbango, F. Ndagijimana, and D. Lilonga-Boyenga, "Movable short-circuit technique to extract the relative permittivity of materials from a coaxial cell," Journal of Measurements in Engineering, Vol. 7, 183-194, 2019.
doi:10.21595/jme.2019.20925

4. Tiwari, N. K. and M. J. Akhtar, "Partially filled substrate integrated waveguide-based microwave technique for broadband dielectric characterization," IEEE Transactions on Instrumentation and Measurement, Vol. 68, 2907-2915, 2019.
doi:10.1109/TIM.2018.2871807

5. Tosaka, T., K. Fujii, K. Fukunaga, and A. Kasamatsu, "Development of complex relative permittivity measurement system based on free-space in 220–330-GHz range," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 102-109, 2015.

6. Severo, S. L. S., A. A. A. De Salles, B. Nervis, and B. K. Zanini, "Non-resonant permittivity measurement methods," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, 297-311, 2017.
doi:10.1590/2179-10742017v16i1890

7. Materials, L., J. Baker-jarvis, R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, 571-577, 1998.
doi:10.1109/94.708274

8. Moukanda Mbango, F., J. E. D. M’Pemba, F. Ndagijimana, and B. M’Passi-Mabiala, "Use of two open-terminated coaxial transmission-lines technique to extract the material relative intrinsic parameters," IEEE Access, Vol. 8, 138682-138689, 2020.
doi:10.1109/ACCESS.2020.3012431

9. You, K. Y., "Effects of sample thickness for dielectric measurements using transmission phase-shift method," International Journal of Advances in Microwave Technology (IJAMT), Vol. 1, 64-67, 2016.

10. Jebbor, N., S. Bri, and M. C. ElBoubakraoui, "Effective complex permittivity determination and microwave absorption properties of a granular dielectric composite material," Procedia Computer Science, Vol. 151, 1022-1027, 2019.
doi:10.1016/j.procs.2019.04.144

11. Costa, F., M. Borgese, M. Degiorgi, and A. Monorchio, "Electromagnetic characterisation of materials by using Transmission/Reflection (T/R) devices," Electronics (Switzerland), Vol. 6, 2017.

12. Goncalves, F. J. F., A. G. M. Pinto, R. C. Mesquita, E. J. Silva, and A. Brancaccio, "Free-space materials characterization by reflection and transmission measurements using frequency-by-frequency and multi-frequency algorithms," Electronics, Vol. 7, 3-6, 2018.
doi:10.3390/electronics7100260

13. Bronckers, L. A. and A. B. Smolders, "Broadband material characterization method using a CPW with a novel calibration technique," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1763-1766, 2016.
doi:10.1109/LAWP.2016.2535115

14. Liao, X. and T. S. Wiedmann, "Characterization of pharmaceutical solids by scanning probe microscopy," Journal of Pharmaceutical Sciences, Vol. 93, 2250-2258, 2004.
doi:10.1002/jps.20139

15. Pometcu, L., A. Sharaiha, R. Benzerga, R. D. Tamas, and P. Pouliguen, "Method for material characterization in a non-anechoic environment," Applied Physics Letters, Vol. 108, 2-6, 2016.
doi:10.1063/1.4947100

16. Hyde, M. W., J. W. Stewart, M. J. Havrilla, W. P. Baker, E. J. Rothwell, and D. P. Nyquist, "Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution," Radio Science, Vol. 44, 1-13, 2009.
doi:10.1029/2008RS003937

17. Antosiewicz, T. J., P. Wrobel, and T. Szoplik, "Magnetic probe for material characterization at optical frequencies," Metamaterials VI, Vol. 8070, 80700E, 2011.
doi:10.1117/12.886828

18. Campos, D. C., J. C. A. Santos, and L. E. P. Borges, "Investigation of thermal effects in coaxial probe method and dielectric characterization of glycerol up to 140C," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 18, 1-17, 2019.
doi:10.1590/2179-10742019v18i11388

19. Liu, W., H. Sun, and L. Xu, "A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor," Sensors (Switzerland), Vol. 18, 18-27, 2018.

20. Bao, X., S. Liu, I. Ocket, J. Bao, D. Schreurs, S. Zhang, C. Cheng, K. Feng, and B. Nauwelaers, "A general line-line method for dielectric material characterization using conductors with the same cross-sectional geometry," IEEE Microwave and Wireless Components Letters, Vol. 28, 356-358, 2018.
doi:10.1109/LMWC.2018.2809041

21. Lopez-Rodrıguez, P., D. Escot-Bocanegra, D. Poyatos-Martınez, and F. Weinmann, "Comparison of metal-backed free-space and open-ended coaxial probe techniques for the dielectric characterization of aeronautical composites," Sensors, Vol. 16, 967-981, 2016.
doi:10.3390/s16070967

22. Reynoso-Hernandez, J. A., "Unified method for determining the complex propagation constant of reflecting and nonreflecting transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 13, 351-353, 2003.
doi:10.1109/LMWC.2003.815695

23. Lin, X. and B. C. Seet, "Dielectric characterization at millimeter waves with hybrid microstrip-line method," IEEE Transactions on Instrumentation and Measurement, Vol. 66, 3100-3102, 2017.
doi:10.1109/TIM.2017.2746362

24. Ouslimani, H. H., R. Abdeddaim, and A. Priou, "Free-space electromagnetic characterization of materials for microwave and radar applications," PIERS Proceedings, 128-132, Hangzhou, China, 2005.

25. Moukanda Mbango, F. and F. Ndagijimana, "Electric parameter extractions using a broadband technique from coaxial line discontinuities," International Journal of Scientific Research and Management, Vol. 7, 248-253, 2019.
doi:10.18535/ijsrm/v7i5.ec01