Vol. 107
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-24
An Electrically Small 3-d Folded Grounded Loop Antenna for Omnidirectional Connectivity
By
Progress In Electromagnetics Research C, Vol. 107, 245-258, 2021
Abstract
Electrically small antennas are of intense and increasing academic and industrial interest due to the advent of ubiquitous RFID devices and more generally within the Internet of Things (IoT) applications. For most of these applications antennas will have to be as small as possible, when being integrated within a transceiver, while maintaining significant efficiency values. Of particular interest are antennas that can radiate omnidirectionally along a planar surface, thus establishing optimal connectivity capabilities for devices surrounding the corresponding transmitter. Such antennas are important not only for energy harvesting but also for near-field wireless charging applications. In this paper, we report an electrically small antenna of size ka ≈ 0.25, where a is its effective radius and k the wave vector at operating frequency. The antenna geometry is a 3-dimensional folded meandering loop and contains its own ground, so that it becomes insensitive to the integration environment. The radiation efficiency of the antenna is 70%, and it radiates as a vertically polarized dipole. The operating frequency chosen in this paper targets RFID/IoT applications at 915 MHz, and the impedance matching bandwidth, as realized, is narrow but appropriate for such applications and may be further increased if appropriate matching networks are used.
Citation
Harry Contopanagos, "An Electrically Small 3-d Folded Grounded Loop Antenna for Omnidirectional Connectivity," Progress In Electromagnetics Research C, Vol. 107, 245-258, 2021.
doi:10.2528/PIERC20111103
References

1. Evans, D., The internet of things: How the next evolution of the internet is changing everything, Cisco Internet Business Solutions Group (IBSG), Cisco Systems, Inc., San Jose, CA, White Paper [Online] http://www.cisco.com/web/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf, 2011.

2. Nordrum, A., "Popular Internet of Things forecast of 50 billion devices by 2020 is outdated," IEEE Spectrum, [Online] https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated, 2016.

3. Hsua, C. L. and J. C.-C. Lin, "An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives," Comp. Human Behavior, Vol. 62, 516-527, 2016.
doi:10.1016/j.chb.2016.04.023

4. Manyika, J., et al., Unlocking the potential of the Internet of Things, McKinsey Global Institute, McKinsey & Company (Digital) [Online] https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things#, 2015.

5. Patel, M., J. Shangkuan, and C. Thomas, What’s new with the Internet of Things?, McKinsey & Company (Semiconductors) [Online] https://www.mckinsey.com/industries/semiconductors/ourinsights/whats-new-with-the-internet-of-things#, 2017.

6. Edquist, H., P. Goodridge, and J. Haskel, "The internet of things and economic growth in a panel of countries," Econ. Innov. New Technology, [Online] https://doi.org/10.1080/10438599.2019.1695941, 2019.

7. Espinoza, H., et al., "Estimating the impact of the internet of things on productivity in Europe," Heliyon, Vol. 6, e03935, [Online] https://doi.org/10.1016/j.heliyon.2020.e03935, 2020.
doi:10.1016/j.heliyon.2020.e03935

8. Lai, X., Z. Xie, and X. Cen, "Compact loop antenna for near-field and far-field UHF RFID applications," Progress In Electromagnetics Research, Vol. 37, 171-182, 2013.
doi:10.2528/PIERC12123105

9. Bhaskar, S. and A. K. Singh, "Meandered cross-shaped slot circularly polarised antenna for handheld UHF RFID reader," Int. J. Electron. Commun. (AEU), Vol. 100, 106-113, 2019.
doi:10.1016/j.aeue.2018.12.024

10. Damis, H. A., et al., "Investigation of epidermal loop antennas for biotelemetry IoT applications," IEEE Access, Vol. 6, 15806-15815, 2018.
doi:10.1109/ACCESS.2018.2814005

11. Contopanagos, H. F., P. Broutas, and S. Chatzandroulis, "Embedded multi-slotted PIFAs for remotely powered passive UHF RFID tags," Microw. Opt. Tech. Lett., Vol. 54, No. 10, 2379-2383, 2012.
doi:10.1002/mop.27096

12. Broutas, P., et al., "A RF power harvester with integrated antenna capable of operating near ground planes," Sensors and Actuators A, Vol. 186, 284-288, 2012.
doi:10.1016/j.sna.2012.05.040

13. Mohammadpour-Aghdam, K., et al., "Miniaturized integrated antennas for far-field wireless powering," Int. J. Electron. Commun. (AEU), Vol. 66, No. 10, 789-796, 2012.
doi:10.1016/j.aeue.2012.01.009

14. Hu, C. H., et al., "One- and two-dimensional antenna arrays for Microwave Wireless Power Transfer (MWPT) systems," IEEE Wireless Power Transfer Conf. (WPTC), 1-–4, Taipei, Taiwan, May 10–12, 2017.

15. Lizzi, L., et al., "Design of miniature antennas for IoT applications," IEEE 6th Int. Conf. on Comm. Electr. (ICCE), 234-237, 2016.

16. Lizzi, L. and F. Ferrero, "Use of ultra-narrow band miniature antennas for internet-of-things applications," Electron. Lett., Vol. 51, No. 24, 1964-1966, 2015.
doi:10.1049/el.2015.3142

17. Powell, C. R. and R. D. Murch, "A capacitively loaded PIFA for compact mobile telephone handsets," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 837-841, 1997.
doi:10.1109/8.575634

18. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1451-1458, 1997.
doi:10.1109/8.633849

19. Virga, K. L. and Y. Rahmat-Samii, "Low profile enhanced-bandwidth PIFA antennas for wireless communications packaging," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1879-1888, 1997.

20. Salonen, P., M. Keskilammi, and M. Kivikoski, "Single-feed dual-band inverted-F antenna with U-shaped slot," IEEE Trans. Antennas Propag., Vol. 48, No. 8, 1262-1264, 2000.
doi:10.1109/8.884498

21. Contopanagos, H., S. Rawson, and L. Desclos, "Wheeler’s law and related issues in integrated antennas," IEEE AP-S Digest, 2055-2058, Monterey, CA, 2004.

22. Dong, Y., J. Choi, and T. Itoh, "Folded strip/slot antenna with extended bandwidth for WLAN application," IEEE Ant. Wireless Propag. Lett., Vol. 16, 673-676, 2017.
doi:10.1109/LAWP.2016.2598276

23. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199

24. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038

25. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
doi:10.1109/8.496253

26. Sten, J. C., P. K. Koivisto, and A. Hujanen, "Limitations for the radiation Q of a small antenna enclosed in a spheroidal volume: Axial polarization," Int. J. Electron. Commun. (AEU), Vol. 55, No. 3, 198-204, 2001.
doi:10.1078/1434-8411-00030

27. Best, S. R., "Low-Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1047-1053, 2005.
doi:10.1109/TAP.2004.842600

28. Kim, O. S., "Low-Q electrically small spherical magnetic dipole antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2210-2217, 2010.
doi:10.1109/TAP.2010.2048863

29. Pfeiffer, C., "Fundamental efficiency limits for small metallic antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1642-1650, 2017.
doi:10.1109/TAP.2017.2670532

30. Thal, Jr., H. L., "Radiation efficiency limits for elementary antenna shapes," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2179-2187, 2018.
doi:10.1109/TAP.2018.2809507

31. Shahpari, M. and D. V. Thiel, "Fundamental limitations for antenna radiation efficiency," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 3894-3901, 2018.
doi:10.1109/TAP.2018.2836447

32. Kumar, S., et al., "A bandwidth enhanced 915 MHz antenna for IoT wrist-watch applications," 13th European Conf. Ant. Propag. (EuCAP 2019), 1-5, Krakow, Poland, March 31–April 5, 2019.

33. Das, S., et al., "A strongly miniaturized and inherently matched folded dipole antenna for narrowband applications," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3377-3386, 2020.
doi:10.1109/TAP.2019.2963232