Vol. 108
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-31
Design of the Segmented-Type Switched Reluctance Linear Synchronous Motor (SSRLSM) for Domestic Lift Application
By
Progress In Electromagnetics Research C, Vol. 108, 13-22, 2021
Abstract
This paper proposes an SRLSM with segmental stator pole. The segmented SRLSM which is known as SSRLSM was designed for domestic lift application. The SSRLSM was designed to fulfill the design target requirement where the lift must be able to transport a maximum 200 kg payload. This payload requires a motor with more than 2000 N thrust force at rated power of 1.5 kW. The rated current is 2.5 A. However, for the excitation current, the maximum current is taken twice of the rated current which is 5.0 A. The design of the SSRLSM was completed in two stages. The first stage is to design the stator pole length, lst, while the second stage is to design the stator pole thickness, tst. The designed models were simulated with FEM software. The simulation results show that the highest thrust produced in first stage is 6773 N. The thrust is produced by the model with stator pole length, lst, of 120 mm. Meanwhile, in the second stage, the model with the stator pole thickness, tst, of 20 mm produced the highest thrust. The thrust obtained from the model is 6903 N. Based on the analysis, the final model was selected. The model has the stator pole length, lst, and stator pole thickness, tst, of 120 mm and 20 mm, respectively.
Citation
Nur Ashikin Mohd Nasir, Fairul Azhar bin Abdul Shukor, Nor Aishah Md Zuki, and Raja Nor Firdaus, "Design of the Segmented-Type Switched Reluctance Linear Synchronous Motor (SSRLSM) for Domestic Lift Application," Progress In Electromagnetics Research C, Vol. 108, 13-22, 2021.
doi:10.2528/PIERC20110205
References

1. Wu, Z. and Y. Xiang, "Linear rotary converter. A new technology for sea wave application," 2017 OCEANS, 1-5, 2017.

2. Huang, Y., S. Zhou, G. Bao, and Z. Wang, "Design and optimization for unilateral flat permanent linear motor," CSAE 2012 — Proceedings, 2012 IEEE International Conference on Computer Science and Automation Engineering, Vol. 1, 687-691, 2012.

3. Hirayama, T., T. Hiraishi, and S. Kawabata, "Study on transfer system with both long-distance driving and high positioning accuracy using linear switched reluctance motor," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 1-4, 2016.

4. Masoudi, S., M. B. Banna Sharifian, and M. R. Feyzi, "Force ripple and jerk minimisation in double sided linear switched reluctance motor used in elevator application," IET Electric Power Applications, Vol. 10, No. 6, 508-516, 2016.
doi:10.1049/iet-epa.2015.0555

5. Wang, D. H., X. H. Wang, C. L. Shao, and Z. L. Wang, "Analysis and design of an annular winding dual side stator linear switch reluctance machine for ropless elevator driving system," 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 322-323, 2015.
doi:10.1109/ASEMD.2015.7453594

6. Fernandez, J. R. and P. Cortez, "A survey of elevator group control systems for vertical transportation: A look at recent literature," IEEE Control Systems Magazine, Vol. 35, No. 4, 38-55, 2015.
doi:10.1109/MCS.2015.2427045

7. Anand, R. and M. Mahesh, "Vertical transportation: an overview on system integration with advance technology," 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), 476-479, 2017.
doi:10.1109/SmartTechCon.2017.8358419

8. Wang, D., X. Du, D. Zhang, and X. Wang, "Design, optimization, and prototyping of segmental-type linear switched-reluctance motor with a toroidally wound mover for vertical propulsion application," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1865-1874, 2018.
doi:10.1109/TIE.2017.2740824

9. Oshima, S., S. Tahara, and K. Ogawa, "Thrust and thrust ripple of linear reluctance motor compared permanent linear synchronous motor," 15th Inter. Conf. on Electrical Machine and Systems (ICEMS) 2012, 1-4, 2012.

10. Yoon, K. and B. Kwon, "Optimal design of a new interior permanent magnet motor using a flaredshape arrangement of ferrite magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.
doi:10.1109/TMAG.2016.2524505

11. Ding, K., "The rare earth magnet industry and rare earth price in China," EPJ Web of Conferences, Vol. 5, 04005, 2014.
doi:10.1051/epjconf/20147504005

12. Mecrow, B. C., J. W. Finch, E. A. El-Kharashi, and A. G. Jack, "Switched reluctance motors with segmental rotors," IEE Proc. — Electr. Power Appl., Vol. 149, No. 4, 245-254, 2002.
doi:10.1049/ip-epa:20020345

13. Anand, R. and M. Mahesh, "Analysis of elevator drives energy consumptions with permanent magnet machines," 2016 IEEE Smart Energy Grid Engineering (SEGE), 186-190, 2016.
doi:10.1109/SEGE.2016.7589523

14. Kamarudin, H., N. R. Muhamad Ariff, W. Z. Wan Ismail, A. F. Bakri, and Z. Ithnin, "Malaysian scenario on access and facilities for persons with disabilities: A literature review," MATEC Web of Conferences, Vol. 15, No. 01019, 2014.

15. Yamamoto, Y. and H. Yamada, "Analysis of magnetic circuit and starting characteristics of flat-type linear pulse motor with permanent magnets," T. IEE Japan, Vol. 104-B, No. 5, 265-272, 1984.