Vol. 108
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-03
High Gain Dielectric Resonance Antenna Array for Millimeter Wave Vehicular Wireless Communication
By
Progress In Electromagnetics Research C, Vol. 108, 63-78, 2021
Abstract
This paper presents a high gain dielectric resonance antenna (DRA) array for vehicular wireless communication and 5G system in millimeter wave band, which takes the advantage of low side lobe level (SLL). The planar antenna array is composed of 8×8 rectangular DRA elements, whose operation mode is the fundamental mode TE111. The beamforming weights of the array are designed based on the principle of Dolph-Chebyshev distribution to suppress the antenna SLL. The planar array consists of 8 linear sub-arrays, which are fed with standing-wave series resonance method respectively. The excitations of sub-array elements are precisely adjusted based on the aperture coupling model. Furthermore, the series-parallel hybrid feed network and parallel-cascaded feed network are applied to unequally feed the sub-arrays in accordance with Chebyshev polynomials. The measurement results of prototype validate the design solution of antenna array. The impedance bandwidth is 570 MHz (25.77 GHz-26.34 GHz) for reflection coefficients less than -10 dB, and the antenna gain and SLL are 20.5±1 dBi and 20 dB, respectively. Due to the advantages of miniaturization and narrow beam, the proposed DRA antenna array is adequate for vehicle communication equipment.
Citation
Wei Luo, Linsong Shi, Wenwen Xu, Wuquan Chen, Yuqi Yang, and Yi Ren, "High Gain Dielectric Resonance Antenna Array for Millimeter Wave Vehicular Wireless Communication," Progress In Electromagnetics Research C, Vol. 108, 63-78, 2021.
doi:10.2528/PIERC20110101
References

1. Guan, K., et al., "5-GHz obstructed vehicle-to-vehicle channel characterization for internet of intelligent vehicles," IEEE Internet of Things Journal, Vol. 6, No. 1, 100-110, Feb. 2019.
doi:10.1109/JIOT.2018.2872437

2. Zhong, Z., et al., "A compact dual-band circularly polarized antenna with wide axial-ratio beamwidth for vehicle GPS satellite navigation application," IEEE Transactions on Vehicular Technology, Vol. 68, No. 9, 8683-8692, Sept. 2019.
doi:10.1109/TVT.2019.2920520

3. Wang, Z., H. Liu, S.-J. Fang, and Y. Cao, "A low-cost dual-wideband active GNSS antenna with low-angle multipath mitigation for vehicle applications," Progress In Electromagnetics Research, Vol. 144, 281-289, 2014.
doi:10.2528/PIER13121205

4. Schwarz, S., E. Zochmann, M. Muller, and K. Guan, "Dependability of directional millimeter wave vehicle-to-infrastructure communications," IEEE Access, Vol. 8, 53162-53171, 2020.
doi:10.1109/ACCESS.2020.2981166

5. Ko, M., H. Lee, and J. Choi, "Planar LTE/sub-6GHz 5G MIMO antenna integrated with mmWave 5G beamforming phased array antennas for V2X applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 11, 1283-1295, 2020.
doi:10.1049/iet-map.2019.0849

6. Sharma, A., et al., "Communication and networking technologies for UAVs: A survey," Journal of Network and Computer Applications, Vol. 168, 1-24, 2020.

7. Hassanien, A., M. G. Amin, E. Aboutanios, and B. Himed, "Dual-function radar communication systems: A solution to the spectrum congestion problem," IEEE Signal Processing Magazine, Vol. 36, No. 5, 115-126, Sept. 2019.
doi:10.1109/MSP.2019.2900571

8. Xu, J., et al., "Wideband, low-profile patch array antenna with corporate stacked microstrip and substrate integrated waveguide feeding structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1368-1373, Feb. 2019.
doi:10.1109/TAP.2018.2883561

9. Inomata, M., et al., "Transparent glass antenna for 28GHz and its signal reception characteristics in urban environment," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, 2020.

10. Trujillo-Flores, J. I., et al., "CPW-fed transparent antenna for vehicle communications," Applied Sciences, Vol. 10, 1-11, 2020.

11. Desai, A., T. Upadhyaya, M. Palandoken, and C. Gocen, "Dual band transparent antenna for wireless MIMO system applications," Microwave and Optical Technology Letters, 1-12, 2019.

12. Boyuan, M., J. Pan, E. Wang, and Y. Luo, "Fixing and aligning methods for dielectric resonator antennas in K band and beyond," IEEE Access, Vol. 7, 12638-12646, 2019.
doi:10.1109/ACCESS.2019.2893443

13. Chowdhury, R. and R. K. Chaudhary, "Investigation of new sectored hemispherical dielectric resonator antennas operating at TM101 and TE111 mode for circular polarization," Progress In Electromagnetics Research, Vol. 167, 95-109, 2020.
doi:10.2528/PIER20041601

14. Sharma, A., G. Das, S. Gupta, and R. K. Gangwar, "Quad-band quad-sense circularly polarized dielectric resonator antenna for GPS/CNSS/WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 403-407, Mar. 2020.
doi:10.1109/LAWP.2020.2969743

15. Yang, M., Y. Pan, Y. Sun, and K. Leung, "Wideband circularly polarized substrate-integrated embedded dielectric resonator antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1145-1150, Feb. 2020.
doi:10.1109/TAP.2019.2938629

16. Mazhar, W., D. M. Klymyshyn, G.Wells, A. A. Qureshi, M. Jacobs, and S. Achenbach, "Low-profile artificial grid dielectric resonator antenna arrays for mm-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4406-4417, Jul. 2019.
doi:10.1109/TAP.2019.2907610

17. Keyrouz, S. and D. Caratelli, "Dielectric resonator antennas: Basic concepts, design guidelines, and recent developments at millimeter-wave frequencies," International Journal of Antennas and Propagation, Vol. 2016, 4406-4417, 2016.

18. Pan, Y. M., X. Qin, Y. X. Sun, and S. Y. Zheng, "A simple decoupling method for 5g millimeter-wave MIMO dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2224-2234, Apr. 2019.
doi:10.1109/TAP.2019.2891456

19. Zhong, L., D. Zhou, R. Liu, X. Wang, and X. Meng, "The feasibility of coexistence between IMT-2020 and inter-satellite service in 26 GHz band," 2020 International Wireless Communications and Mobile Computing (IWCMC), 1006-1011, Limassol, 2020.

20. Jin, L., R. Lee, and I. Robertson, "A dielectric resonator antenna array using dielectric insular image guide," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 859-862, Feb. 2015.
doi:10.1109/TAP.2014.2382670

21. Diawuo, H. A. and Y. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1286-1290, Jul. 2018.
doi:10.1109/LAWP.2018.2842242

22. Ma, T., J. Ai, M. Shen, and W. T. Joines, "Design of novel broadband endfire dipole array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2935-2938, 2017.
doi:10.1109/LAWP.2017.2753820

23. Qasaymeh, Y. M., A. Almuhasien, and T. Kamran, "A compact wideband series linear dielectric resonator array antenna," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 28, 394-403, 2020.
doi:10.3906/elk-1905-41

24. Yi, H., L. Li, J. Han, and Y. Shi, "Traveling-wave series-fed patch array antenna using novel reflection-canceling elements for flexible beam," IEEE Access, Vol. 7, 111466-111476, 2019.
doi:10.1109/ACCESS.2019.2934652