Vol. 109
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-03
A Preclinical System for Enhancing the Efficiency of Microwave Breast Cancer Hyperthermia Therapy Using Dielectric Matched Layer and Convex Lenses
By
Progress In Electromagnetics Research C, Vol. 109, 153-168, 2021
Abstract
Convex lenses can be used in adjuvant with microwave sources to produce appropriate focus spots for breast cancer hyperthermia therapy. A preclinical system was assessed using a horn antenna together with a convex lens. The horn antenna was built to accommodate the lens size so as to minimize wave spillover. Here, a modified hyperthermia system was tested on a hemisphere phantom of scattered fibro glandular breast tissue with cancer stages I & II. The focus spots were at different locations and depths (up to 2.7 cm) under the skin layer. Transmission and reflection coefficients at the air-breast phantom interface were calculated to determine the best operating frequency (2.45 GHz) for efficient power absorption. Based on these computations, an external dielectric matched layer was added onto the skin of the breast phantom to decrease reflection that would occur between water and skin. This arrangement increased wave transmission inside the breast without increasing applicator input feed. The system could heat regions of tumor at various locations independently using only one applicator. The whole system was fabricated, and measurements were taken to validate the simulated and analytical results.
Citation
Maha Raof Abdel-Haleem, Tamer Gaber Mohammed Abouelnaga, Mohammed Abo-Zahhad, and Sabah M. Ahmed, "A Preclinical System for Enhancing the Efficiency of Microwave Breast Cancer Hyperthermia Therapy Using Dielectric Matched Layer and Convex Lenses," Progress In Electromagnetics Research C, Vol. 109, 153-168, 2021.
doi:10.2528/PIERC20101406
References

1. Abdel-Haleem, M. R., T. Abouelnaga, S. M. Ahmed, et al. "Convex lenses horn antenna microwave hyperthermia scheme," 12th European Conference on Antennas and Propagation (EuCAP), London, UK, 2018.

2. Choi, W. C., S. Lim, and Y. J. Yoon, "Design of noninvasive hyperthermia system using transmit-array lens antenna configuration," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 857-860, 2015.
doi:10.1109/LAWP.2015.2477428

3. Nguyen, P. T., A. Abbosh, and S. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Trans. Biomed. Eng., Vol. 64, No. 6, 1335-1344, 2017.
doi:10.1109/TBME.2016.2602233

4. Tao, Y. and G. Wang, "Conformal hyperthermia of superficial tumor with cylindrical left-handed metamaterial lens applicator," Progress In Electromagnetics Research C, Vol. 66, 1-10, 2016.
doi:10.2528/PIERC16050303

5. Tao, Y., E. Yang, and G. Wang, "Left-handed metamaterial lens applicator with built-in cooling feature for superficial tumor hyperthermia," Appl. Computational Electromagnetics Society J., Vol. 32, No. 11, 1029-1034, 2017.

6. Asili, M., P. Chen, A. Z. Hood, et al. "Flexible microwave antenna applicator for chemo thermotherapy of the breast," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 1778-1781, 2014.

7. Datta, N. R., et al., "Local hyperthermia combined with radiotherapy and/or chemotherapy: Recent advances and promises for the future," Cancer Treat. Reviews, Vol. 41, No. 9, 742-753, 2015.
doi:10.1016/j.ctrv.2015.05.009

8. ACR ARC BI-RADS Atlas, American College of Radiology, USA, 2013.

9. Giuliano, A. E., J. L. Connolly, S. B. Edge, et al. "Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual," A Cancer J. for Clinicians, Vol. 67, No. 4, 290-303, 2017.
doi:10.3322/caac.21393

10. Nguyen, P. T., A. Abbosh, and S. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Trans. Biomed. Eng., Vol. 64, No. 6, 1335-1344, 2016.
doi:10.1109/TBME.2016.2602233

11. Stang, J., M. Haynes, P. Carson, and M. Moghaddam, "A preclinical system prototype for focused microwave thermal therapy of the breast," IEEE Trans. Biomed. Eng., Vol. 59, No. 9, 2431-2438, 2012.
doi:10.1109/TBME.2012.2199492

12. He, X., W. Geyi, and Sh. Wang, "Optimal design of focused arrays for microwave-induced hyperthermia," IET Microw., Antennas Propag., Vol. 9, No. 14, 1605-1611, 2015.
doi:10.1049/iet-map.2014.0696

13. Curto, S., T. S. P. See, P. McEvoy, et al. "In-silico hyperthermia performance of a near-field patch antenna at various positions on a human body model," IET Microw., Antennas Propag., Vol. 5, No. 12, 1408-1415, 2011.
doi:10.1049/iet-map.2010.0611

14. Karnik, N. S., R. Tulpule, M. Shah, et al. IET Microw., Antennas Propag., Vol. 4, No. 2, 162-174, 2010.
doi:10.1049/iet-map.2008.0352

15. Wang, G. and Y. Gong, "Metamaterial lens applicator for microwave hyperthermia of breast cancer," Int. J. Hyperthermia, Vol. 25, No. 6, 434-445, 2009.
doi:10.1080/02656730903061609

16. Tao, Y. and G. Wang, "Conformal hyperthermia of superficial tumor with cylindrical left-handed metamaterial lens applicator," Progress In Electromagnetics Research C, Vol. 66, 1-10, 2016.
doi:10.2528/PIERC16050303

17. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications (AEU), Vol. 111, 2019.

18. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Thailand, 2016.

19. Harrington, R. F., SphericalWave Function, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, NY, USA, 1961.

20. Luhn, S. and M. Hentschel, "Analytical Fresnel laws for curved dielectric interfaces," Journal of Optics, Vol. 22, 2020.

21. Lazebnik, M., D. Popovic, L. McCartney, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

22. Ashok Kumar, S. and T. Shanmuganantham, "Design and analysis of implantable CPW fed bowtie antenna for ISM band applications," AEU — Int. J. of Electron. and Commun., Vol. 68, No. 2, 158-165, 2014.
doi:10.1016/j.aeue.2013.08.003

23. Ashok Kumar, S. and T. Shanmuganantham, "Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications," AEU — Int. J. of Electron. and Commun., Vol. 68, No. 7, 661-666, 2014.
doi:10.1016/j.aeue.2014.02.010

24. Ivashina, M. V., J. Simons, and J. G. Bij De Vaate, "Efficiency analysis of focal plane arrays in deep dishes," The Square Kilometre Array: An Engineering Perspective, 149-162, Dordrecht, Springer, 2005.

25. Dahri, M. H., M. H. Jamaluddin, F. C. Seman, et al. "Aspects of efficiency enhancement in reflectarrays with analytical investigation and accurate measurement," Electronics, Vol. 9, No. 11, 2020.
doi:10.3390/electronics9111887

26. Gholipur, T. and M. Nakhkash, "Optimized matching liquid with wide-slot antenna for microwave breast imaging," AEU — Int. J. of Electron. and Commun., Vol. 85, 192-197, 2018.
doi:10.1016/j.aeue.2017.12.037

27. Pe’rez Cesaretti, M. D., General effective medium model for the complex permittivity extraction with an open-ended coaxial probe in presence of a multilayer material under test, Ph.D. dissertation, University of Bologna, Italy, 2012.

28. Hu, F., J. Song, and T. Kamgaing, "Modeling of multilayered media using effective medium theory," 19th Conference on Electrical Performance of Electronic Packaging and Systems, USA, Oct. 2010.

29. Gabriel, N. H., L. C. James, J. D. Carl, et al. "AJCC cancer staging manual," American Joint Committee on Cancer (AJCC), 589-628, Springer, New York, 2017.

30. Council of the European Union "Council Recommendation: On the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)," Official Journal of the European Communities, 1999.

31. Meaney, P., T. Rydholm, and H. Brisby, "A transmission-based dielectric property probe for clinical applications," Sensors, Vol. 18, No. 10, 3484, 2018.
doi:10.3390/s18103484

32. SPEAG DAK Professional Handbook V2.4, Schmid & Partner Engineering AG, Switzerland, 2016.

33. Lazebnik, M. and M. Okoniewski, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 12, 822-824, 2007.
doi:10.1109/LMWC.2007.910465

34. Dadzadi, A. and R. Faraji-Dana, "Breast cancer hemispheric shaped hyperthermia system designed with compact conformal planar antenna array," IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019.

35. Choi, W. C., S. Lim, and Y. J. Yoon, "Evaluation of transmit-array lens antenna for deep-seated hyperthermia tumor treatment," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 866-870, 2020.
doi:10.1109/LAWP.2020.2982676