Vol. 105
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-27
Differentially Fed Dual-Polarized SIW Cavity-Backed Patch Antenna with Wide Bandwidth Under Multimode Resonance
By
Progress In Electromagnetics Research C, Vol. 105, 229-240, 2020
Abstract
A differentially fed dual-polarized patch antenna with wide bandwidth is presented in this paper using Substrate-Integrated Waveguide (SIW) technology. The antenna comprises a circular patch radiator, a square SIW cavity and four symmetric arc-shaped slots. The circular patch is internally embedded in the square SIW cavity with a surrounded ring slot. Two pairs of differential L-shaped probes are used for the excitation of the differential signals. These signals excite the orthogonal linearly-polarized modes. The dominant resonant mode of the circular patch resonator (TM11) and the modes of the SIW cavity (TE110 and TE120/TE210) are employed to achieve effective radiation under these resonances. Besides, four symmetric arc-shaped slots are etched on the top surface of the cavity to enhance the impedance bandwidth. The resonant properties of these modes are studied based on the cavity model theory. Then, their resonant frequencies are discussed to provide information for designing and optimizing such an antenna. Finally, the feeding positions of the differential L-shaped probes are investigated for good impedance matching. The proposed antenna has been fabricated and measured. The measured results show that the proposed antenna achieves a wide impedance bandwidth of about 64.8% (4.37-8.56 GHz) and 64.2% (4.48-8.72 GHz) for horizontal and vertical polarization, respectively. High differential isolation of better than 30 dB and low cross-polarization are obtained by adopting the differential feeding mechanism. Due to the SIW cavity-backed structure, the antenna shows unidirectional radiation patterns and low back-lobe radiation, making it conveniently integrated with microwave differential circuits and applied in the base station systems.
Citation
Jiao-Jiao Xie, and Zi Chen, "Differentially Fed Dual-Polarized SIW Cavity-Backed Patch Antenna with Wide Bandwidth Under Multimode Resonance," Progress In Electromagnetics Research C, Vol. 105, 229-240, 2020.
doi:10.2528/PIERC20080901
References

1. Kang, B., H. Hwang, and C. Park, "Differential transformer using bonder-wires and patterns on a printed circuit board for RF circuit applications," Progress In Electromagnetics Research, Vol. 135, 363-371, 2013.
doi:10.2528/PIER12120402

2. Xu, Y., H. Li, Y.-Z. Yin, and Z. Deng, "A compact differential-fed half-elliptic monopole antenna with triple band-notched function," Progress In Electromagnetics Research Letters, Vol. 62, 35-40, 2016.
doi:10.2528/PIERL16070601

3. Wu, J., Y.-Z. Yin, Z. Wang, and R. Lian, "Dual-band circularly polarized antenna with differential feeding," Progress In Electromagnetics Research C, Vol. 49, 11-17, 2014.
doi:10.2528/PIERC14030603

4. Yang, M., J. Zhou, W. Lian, and B. Chen, "Dual-band dual-polarized magneto-electric dipole antenna with dual-layer structure," Progress In Electromagnetics Research M, Vol. 92, 193-202, 2020.
doi:10.2528/PIERM20022708

5. Nawaz, H. and I. Tekin, "Duble-differential-fed, dual-polarized patch antenna with 90 dB interport RF isolation for a 2.4 GHz in-band full-duplex transceiver," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 287-290, 2018.
doi:10.1109/LAWP.2017.2786942

6. Tang, H., C. Tong, and J.-X. Chen, "Differential dual-polarized filtering dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 66, 4298-4302, 2018.
doi:10.1109/TAP.2018.2836449

7. Liu, Y., S. Wang, X. Wang, and Y. Jia, "A differentially fed dual-polarized slot antenna with high isolation and low profile for base station application," IEEE Antennas Wireless Propagat. Lett., Vol. 18, 303-307, 2019.
doi:10.1109/LAWP.2018.2889645

8. Tang, Z., J. Liu, and Y. Yin, "Enhanced cross-polarization discrimination of wideband differentially fed dual-polarized antenna via a shorting loop," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 1454-1458, 2018.
doi:10.1109/LAWP.2018.2849221

9. Huang, H., Y. Liu, and S.-X. Gong, "Differential-fed ultrawideband polarization diversity antenna with dual notch bands," Microw. Opt. Technol. Lett., Vol. 57, 1084-1089, 2015.
doi:10.1002/mop.29018

10. Li, W.-A., Z.-H. Tu, and Q.-X. Chu, "Compact, high isolation, and dual-polarized differential dual-notched UWB-MIMO slot antenna," Microw. Opt. Technol. Lett., Vol. 57, 2609-2614, 2015.
doi:10.1002/mop.29396

11. Dokuparthi, J. and A. Sudhakar, "Dual band half mode SIW semi circular cavity back slot antenna," Progress In Electromagnetics Research Letters, Vol. 87, 7-14, 2019.
doi:10.2528/PIERL19062005

12. Pavone, S. C. and M. Albani, "Design and fabrication of a sectoral beam slotted antenna in SIW technology for surveillance applications at millimeter waves," Progress In Electromagnetics Research, Vol. 167, 55-65, 2020.
doi:10.2528/PIER20012102

13. Chaturvedi, D. and S. Raghavan, "Compact QMSIW based antennas for WLAN/WBAN applications," Progress In Electromagnetics Research C, Vol. 82, 145-153, 2018.
doi:10.2528/PIERC18012003

14. Srivastava, G. and A. Mohan, "A differential dual-polarized SIW cavity-backed slot antenna," IEEE Trans. Antennas Propag., Vol. 67, 3450-3454, 2019.
doi:10.1109/TAP.2019.2900380

15. Chaturvedi, D., A. Kumar, and S. Raghavan, "An integrated SIW cavity-backed slot antenna-triplexer," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 1557-1560, 2018.
doi:10.1109/LAWP.2018.2855051

16. Wu, Q., H. Wang, C. Yu, and W. Hong, "Low-profile circularly polarized cavity-backed antennas using SIW techniques," IEEE Trans. Antennas Propag., Vol. 64, 2832-2839, 2016.
doi:10.1109/TAP.2016.2560940

17. Liu, Q., L. Zhu, J. Wang, and W. Wu, "Wideband low-profile differential-fed patch antennas with an embedded SIW cavity under dual-mode resonance," IEEE Trans. Antennas Propag., Vol. 67, 4235-4240, 2019.
doi:10.1109/TAP.2019.2911193