Vol. 106
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-05
A Circuit-Coupled FEM Model with Considering Parasitic Capacitances Effect for Galvanic Coupling Intrabody Communication
By
Progress In Electromagnetics Research C, Vol. 106, 17-27, 2020
Abstract
Characterization of the human body channel is a necessity to pave way for practical implementation of intrabody communication (IBC) in body area networks (BAN). In this paper, a circuit-coupled finite element method (FEM) based model is proposed to represent the galvanic coupling type IBC on human arm. In contrast with other models for IBC, both the finite element method and the parasitic capacitances between electrodes are taken into account in the modeling. To understand the characteristics of IBC, simulations with multiple frequencies, excitation voltages, channel lengths and values of parasitic capacitors are carried out using the model. The current density and electric field distribution in different human tissues reveal an insight into signal transmission path through the human body intuitively. The body channel gain presents a band-pass property after adding the parasitic capacitances into the model, while it performs an increasing characteristic with the frequency before the adding. Finally, a galvanic coupling IBC measurement setup is fulfilled, and the outcome shows a good agreement with the proposed model. It is indicated that the parasitic capacitances are the major factors to cause the band-pass and affect the bandwidth, and they should not be neglected in the real IBC applications.
Citation
Zhiying Chen, Yueming Gao, Min Du, and Feng Lin, "A Circuit-Coupled FEM Model with Considering Parasitic Capacitances Effect for Galvanic Coupling Intrabody Communication," Progress In Electromagnetics Research C, Vol. 106, 17-27, 2020.
doi:10.2528/PIERC20072701
References

1. Zimmerman, T. G., "Personal area networks: Near-field intra-body communication,", M.S. thesis, MIT Media Lab., Cambridge, MA, Sep. 1995.
doi:10.1109/EMBC.2012.6346971

2. Kobayashi, T., Y. Shimatani, and M. Kyoso, "Application of near-field intra-body communication and spread spectrum technique to vital-sign monitor," Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 4517-4520, 2012.

3. IEEE Standard for Local and Metropolitan Area Networks — Part 15.6: Wireless Body Area Networks, IEEE Standard 02.15.6-2012, , 1-271, 2012.
doi:10.1109/TBME.2013.2254714

4. Seyedi, M., B. Kibret, D. T. H. Lai, and M. Faulkner, "A survey on intrabody communications for body area network applications," IEEE Transactions on Biomedical Engineering, Vol. 60, No. 8, 2067-2079, 2013.
doi:10.1109/TIM.2012.2205491

5. Lucev, Z., I. Krois, and M. Cifrek, "A capacitive intrabody communication channel from 100 kHz to 100 MHz," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 12, 3280-3289, 2012.
doi:10.1109/TBME.2010.2093933

6. Xu, R., H. Zhu, and J. Yuan, "Electric-field intrabody communication channel modeling with finite-element method," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, 705-712, Mar. 2011.
doi:10.1109/TBME.2013.2289946

7. Callejon, M. A., J. Reina-Tosina, D. Naranjo-Hernandez, and L. M. Roa, "Galvanic coupling transmission in intrabody communication: A finite element approach," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 3, 775-783, 2014.

8. Pun, S. H., Y. M. Gao, P. U. Mak, M. I. Vai, and M. Du, "Quasi-static modeling of human limb for intra-body communications with experiments," IEEE Trans. Inf. Technol. Biomed., Vol. 15, No. 6, 870-876, Nov. 2011.
doi:10.1016/j.sna.2006.04.044

9. Hachisuka, K., Y. Terauchi, Y. Kishi, et al. "Simplified circuit modeling and fabrication of intrabody communication devices," Sens. Actuators A, Vol. 130–131, 322-330, Jun. 2006.
doi:10.1109/TAP.2013.2246534

10. Haga, N., K. Saito, M. Takahashi, et al. "Equivalent circuit of intrabody communication channels inducing conduction currents inside the human body," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2807-2816, 2013.
doi:10.1109/JBHI.2014.2301165

11. Kibret, B., M. Seyedi, D. T. Lai, et al. "Investigation of galvanic-coupled intrabody communication using the human body circuit model," IEEE J. Biomed. Health Inform., Vol. 18, No. 4, 1196-1206, Jul. 2014.
doi:10.1109/TBCAS.2015.2412548

12. Swaminathan, M., F. S. Cabrera, J. S. Pujol, U. Muncuk, G. Schirner, and K. R. Chowdhury, "Multi-path model and sensitivity analysis for galvanic coupled intra-body communication through layered tissue," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 2, 339-351, Apr. 2016.
doi:10.1109/TBME.2012.2205382

13. Callejon, M. A., D. Naranjo-Hernandez, J. Reina-Tosina, and L. M. Roa, "Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 11, 3263-3269, Nov. 2012.

14. Xu, R., H. Zhu, and J. Yuan, "Circuit-coupled FEM analysis of the electric field type intra-body communication channel," Proc. IEEE Biomed. Circuits Syst. Conf., 221-224, Nov. 2009.

15. Gao, Y. M., Z. M. Wu, S. H. Pun, et al. "A novel field-circuit FEM modeling and channel gain estimation for galvanic coupling real IBC measurements," Sensors (Basel), Vol. 16, No. 4, Apr. 2, 2016.
doi:10.1088/0031-9155/41/11/003

16. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, 1996.

17. Gao, Y. M., "Investigation of electromagnetic model and empirical analysis for galvanic coupling intra-body communication,", Ph.D. Thesis of Fuzhou University, 103–105, 2010.
doi:10.1109/TMTT.2007.895640

18. Cho, N., J. Yoo, S.-J. Song, et al. "The human body characteristics as a signal transmission medium for intrabody communication," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 5, 1080-1086, 2007.

19. Chen, Z. Y., Y. M. Gao, and M. Du, "Multilayer distributed circuit modeling for galvanic coupling intrabody communication," Journal of Sensors, Vol. 2018, 8096064, 2018.