Vol. 105
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-06
A Dual Circularly Reconfigurable Polarization Patch Antenna for Fifth Generation Mobile Communication Systems
By
Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020
Abstract
In this paper, a reconfigurable patch antenna with Circular Polarization (CP) diversity with theoretical discussion and verification is proposed for the fifth generation (5G) of mobile communication systems. The proposed antenna contains two PIN diodes, which are correctly placed on the ground plane to attain polarization diversity. By switching between two ON/OFF modes in the PIN diodes, the proposed antenna can support the RHCP mode or the LHCP mode. An antenna with the well-matched impedance bandwidths (S11 ≤ -10 dB) of 2.5 GHz (27~29.5 GHz) and 3 GHz (36~39 GHz) and the dual-band 3-dB axial ratios of 6% (27.3-29 GHz) and 8.4% (35-38.2 GHz) operates at both the RHCP and LHCP modes. The experimental result shows that the proposed antenna has a circular polarization bandwidth at the center frequencies of 28 and 38 GHz for both the RHCP and LHCP.
Citation
Nazih Khaddaj Mallat, Mahdi Nouri, Sajjad Abazari Aghdam, Muhammad Talha Zia, Bassam Harb, and Alireza Jafarieh, "A Dual Circularly Reconfigurable Polarization Patch Antenna for Fifth Generation Mobile Communication Systems," Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020.
doi:10.2528/PIERC20053002
References

1. Akyildiz, F., et al., "5G roadmap: 10 key enabling technologies," Computer Networks, Vol. 106, 17-48, 2016.
doi:10.1016/j.comnet.2016.06.010

2. Haraz, O. M., "Broadband and 28/38-GHz dual-band printed monopole/elliptical slot ring antennas for the future 5G cellular communications," J. Infrared Milli Terahz Waves, Vol. 37, 308-317, 2016.
doi:10.1007/s10762-016-0252-2

3. Li, Q. C., et al., "5G network capacity: Key elements and technologies," IEEE Vehicular Technology Magazine, Vol. 9, No. 1, 71-78, 2014.
doi:10.1109/MVT.2013.2295070

4. El-Halwagy, W., et al., "Investigation of wideband substrate-integrated vertically-polarized electric dipole antenna and arrays for mmWave 5G mobile devices," IEEE Access, Vol. 6, 2145-2157, 2018.
doi:10.1109/ACCESS.2017.2782083

5. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

6. Wang, C. X., et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6736752

7. Register, F., "Use of spectrum bands above 24 GHz for mobile radio services," Federal Communications Commission, Vol. 81, No. 219, 2016.

8. Nishamol, M. S., et al., "An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3424-3427, 2011.
doi:10.1109/TAP.2011.2161446

9. Yang, X.-X., et al., "A polarization reconfigurable patch antenna with loop slots on the ground plane," IEEE Transactions on Antennas and Propagation, Vol. 11, 69-72, 2012.

10. Li, Y., et al., "Polarization reconfigurable slot antenna with a novel compact CPW-to-slotline transition for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 252-255, 2010.
doi:10.1109/LAWP.2010.2046006

11. Pyo, S., J. Baik, and Y. Kim, "Slot-perturbed microstrip antenna for switchable circular polarisation," Electronics Letters, Vol. 47, No. 10, 583-585, 2011.
doi:10.1049/el.2011.0721

12. Lawrence, N. P., et al., "5G terrestrial networks: Mobility and coverage-solution in three dimensions," IEEE Access, Vol. 5, 8064-8093, 2017.
doi:10.1109/ACCESS.2017.2693375

13. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 787-790, 2015.
doi:10.1109/LAWP.2014.2385475

14. Bisharat, D. J., S. Liao, and Q. Xue, "High gain and low cost differentially fed circularly polarized planar aperture antenna for broadband millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 64, 33-42, 2016.
doi:10.1109/TAP.2015.2499750

15. Akbari, S. G. M., et al., "Analytic study on CP enhancement of millimeter wave DR and patch subarray antennas," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 1, e21053, 2017.
doi:10.1002/mmce.21053

16. Park, S. J. and S. O. Park, "LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 601-604, 2017.
doi:10.1109/LAWP.2016.2594081

17. Asaadi, M. and A. Sebak, "High-gain low-profile circularly polarized slotted SIW cavity antenna for mmWave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 752-755, 2017.
doi:10.1109/LAWP.2016.2601900

18. Guntupalli, A. B. and K. Wu, "Frequency-steered directive beam with dual circular polarization and two-dimensional scan capability for millimeter wave imaging and sensing systems," IEEE WAMICON, 1-3, 2014.

19. Cheng, Y. J., W. Hong, and K. Wu, "Millimeter wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization," IEEE Transactions on Antennas and Propagation, Vol. 58, 1848-1855, 2010.
doi:10.1109/TAP.2010.2046844

20. Haraz, O. M., "Millimeter-wave printed dipole array antenna loaded with a low-cost dielectric lens for high-gain applications," J. Infrared Milli Terahz Waves, Vol. 41, 225-244, 2020.
doi:10.1007/s10762-019-00654-5

21., https:cdn.macom.com/datasheets/MA4AGP907-MA4AGFCP910.pdf.

22. Ansoft HFSS, Ver. 15, Ansoft Corporation, Pittsburgh, PA, 2015.

23. Kanaujia, B. K., M. K. Khandelwal, S. Dwari, S. Kumar, and A. K. Gautam, "Analysis and design of compact high gain microstrip patch antenna with defected ground structure for wireless applications," Wireless Personal Communications, Vol. 91, No. 2, 661-678, 2016.
doi:10.1007/s11277-016-3486-3

24. Cheng, D. K., Field and Wave Electromagnetics, Pearson Education India, 1989.

25. Syrytsin, I., et al., "User effects on the circular polarization of 5G mobile terminal antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4906-4911, 2018.
doi:10.1109/TAP.2018.2851383

26. Abbas, E. A., A. T. Mobashsher, and A. Abbosh, "Polarization reconfigurable antenna for 5G cellular networks operating at millimeter waves," IEEE Asia Pacific Microwave Conference (APMC), 772-774, Kuala Lumpar, 2017.

27. Wu, Q., et al., "Millimeter wave multi beam endfire dual-circularly polarized antenna array for 5G wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4930-4935, 2018.
doi:10.1109/TAP.2018.2851667

28. Hussain, N., M. Jeong, J. Park, and N. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441

29. Aboualalaa, M., et al., "Independent matching dual-band compact quarter-wave half-slot antenna for millimeter-wave applications," IEEE Access, Vol. 7, 130782-130790, 2019.
doi:10.1109/ACCESS.2019.2940273

30. Li, B., Y. Deng, J. Zhang, and Z. Zhou, "Novel method for measuring the axial ratio of circularly polarized antennas based on the cross-polarization," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, IEEE, 2017.

31. Rodenbeck, C. T., K. Chang, and J. Aubin, "Automated pattern measurement for circularly-polarized antennas using the phase-amplitude method," Microwave Journal, Vol. 47, No. 7, 2004.