Vol. 104
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-17
A Switchable Triple-Band Notched UWB Antenna Using Compact Multi-via Electromagnetic Band Gap Structure
By
Progress In Electromagnetics Research C, Vol. 104, 201-214, 2020
Abstract
In this paper, a miniaturized triple-band gap multi-via electromagnetic band gap (TBMV-EBG) structure is proposed. Lumped LC modelling method is used for the analysis of the proposed TBMV-EBG structure. Triple band gaps in both x and y-directions are obtained since TBMV-EBG unit cell consists of three resonance parallel LC circuits. Ansys (HFSS) simulation is used in eigen mode to simulate a unit cell of the proposed EBG. There is a strong agreement between simulated and experimental results. Comparing the proposed TBMV-EBG with triple band slotted EBG, triple band CSRR-EBG, fractal EBG, and dual band split EBG, size reductions of 6.52%, 7.53%, 23.21%, and 25.86% are obtained respectively which is validated by simulated and experimental results. Demonstration of the proposed TBMV-EBG structure for ultra-wideband (UWB) application is also presented. Simulation and measurement results prove that by using a single TBMV-EBG cell at the feed line of a UWB monopole antenna triple band-notches can be obtained. Moreover, switching characteristics of the proposed antenna are also demonstrated using single P-I-N diode. Depending on the ON and OFF switching status of P-I-N diode, the UWB antenna provides switching from triple band-notches to dual band-notches, respectively. The proposed switchable monopole UWB antenna as a single unit can be useful in applications wherein switching between multi-bands is desirable without changing the geometry of the structure.
Citation
Vijay Ramesh Kapure, Pramod P. Bhavarthe, and Surendra S. Rathod, "A Switchable Triple-Band Notched UWB Antenna Using Compact Multi-via Electromagnetic Band Gap Structure," Progress In Electromagnetics Research C, Vol. 104, 201-214, 2020.
doi:10.2528/PIERC20052302
References

1. Sievenpiper, D., L. Zhang, Romulo, J. Broas, N. Alexopolous, and E. Yablonovith, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.

2. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.

3. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic bandgap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.

4. Peng, L., C. Ruan, and Z. Li, "A novel compact and polarization-dependent mushroom-type EBG using CSRR for dual/triple-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 09, 489-491, Sept. 2010.

5. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "Compact dual band gap electromagnetic bandgap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 596-600, Jan. 2019.

6. Chen, W., C. Balanis, and C. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4133-4138, Sept. 2016.

7. Zhang, S., "Novel dual-band compact HIS and its application of reducing array in-band RCS," Microwave and Optical Technology Letters, Vol. 58, No. 3, 700-704, Mar. 2016.

8. Bao, X. L., G. Ruvio, and M. J. Ammann, "Low-profile dual-frequency GPS patch antenna enhanced with dual-band EBG structure," Microwave and Optical Technology Letters, Vol. 49, No. 11, 2630-2634, Nov. 2007.

9. Tan, X., W. Wang, Y. Wu, Y. Liu, and A. Kishk, "Enhancing isolation in dual-band meander-line multiple antenna by employing split EBG structure," IEEE Trans. Antennas Propag. (Early access), Vol. 67, No. 4, Apr. 2019.

10. Remski, R., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave Journal, Vol. 43, No. 9, 190-199, Sept. 2000.

11. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, Jan. 2005.

12. Skyworks "SMP1352 series: Large signal switching, plastic packaged PIN diodes," Datasheet, Jun. 2012.

13. Gao, G., B. Hu, L. He, S.Wang, and C. Yang, "Investigation of a reconfigurable dual notched UWB antenna by conceptual circuit model and time domain characteristics," Microwave and Optical Technology Letters, Vol. 59, 1326-1332, Jun. 2017.

14. Alhegazi, A., Z. Zakaria, N. A. Shairi, I. M. Ibrahim, and S. Ahmed, "A novel reconfigurable UWB filtering-antenna with dual sharp band notches using double split ring resonators," Progress In Electromagnetics Research C, Vol. 59, 185-198, Nov. 2017.

15. Hua, C., Y. Lu, and T. Liu, "UWB heart-shaped planar monopole antenna with a reconfigurable notched band," Progress In Electromagnetics Research Letters, Vol. 65, 123-130, Jan. 2017.

16. Deng, T., S. Hou, L. Zhao, and L. Guo, "A reconfigurable filtering antenna with integrated bandpass filters for UWB/WLAN applications," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 401-404, Jan. 2018.

17. Nejatijahromi, M., M. Naghshvarianjahromi, and M. Rahman, "Switchable planar monopole antenna between ultra-wideband and narrow band behavior," Progress In Electromagnetics Research Letters, Vol. 75, 131-137, May 2018.

18. Nejatijahromi, M., M. U. Rahman, and M. Naghshvarianjahromi, "Continuously tunable WiMAX band-notched UWB antenna with fixed WLAN notched band," Progress In Electromagnetics Research Letters, Vol. 75, 97-103, May 2018.

19. Nejatijahromi, M., M. Naghshvarianjahromi, and M. Rahman, "Compact CPW fed switchable UWB antenna as an antenna filter at narrow-frequency bands," Progress In Electromagnetics Research C, Vol. 81, 199-209, Feb. 2018.

20. Trimukhe, M. A. and B. G. Hogade, "Compact UWB antenna with tunable band-notch characteristics using varactor diode," Progress In Electromagnetics Research C, Vol. 97, 15-28, Nov. 2019.