Vol. 103
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-01
Meta-Heuristic Multi-Objective as an Affordable Method for Improving the Grating Lobe in a Wide Scan Phased Array Antenna
By
Progress In Electromagnetics Research C, Vol. 103, 155-166, 2020
Abstract
In electronic beam scanning, the number of phase shifters is an obvious challenge. So, there are several methods to reduce the number of phase shifters. The aim of this paper is to investigate the use of the meta-heuristic algorithm to lower the grating lobe level in the subarray antenna. Improve the result obtained by group subarray optimization techniques to determine topology and space between elements, and complex optimization of weight, simultaneously. Uniform subarray and random subarray are analyzed in Matlab to determine the coefficient of excitation by the evolutionary algorithm, as well as swarm and hybrid. The results of the simulation are shown; this method leads to radiation pattern without grating lobe in wide scanning angle. It indicates that there is a possibility of obtaining wide electronic scanning with minimum number of phase shifters and improving result.
Citation
Maryam Shadi, and Zahra Atlasbaf, "Meta-Heuristic Multi-Objective as an Affordable Method for Improving the Grating Lobe in a Wide Scan Phased Array Antenna," Progress In Electromagnetics Research C, Vol. 103, 155-166, 2020.
doi:10.2528/PIERC20030604
References

1. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, 2017.

2. Avser, B., J. Pierro, and G. M. Rebeiz, "Random feeding networks for reducing the number of phase shifters in limited-scan arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4648-4658, 2016.
doi:10.1109/TAP.2016.2600861

3. Akbar, F. and A. Mortazawi, "Scalable phased array architectures with a reduced number of tunable phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 9, 3428-3434, 2017.
doi:10.1109/TMTT.2017.2657509

4. Yan, F., P. Yang, M. Gao, X. Cui, and F. Yang, "Grating lobe reduction in phased arrays with regular subarray architecture," 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., Vol. 2017-Janua, No. 3, 1597-1598, 2017.

5. Barott, W. C. and P. G. Steffes, "Grating lobe reduction in aperiodic linear arrays of physically large antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 406-408, 2009.
doi:10.1109/LAWP.2008.2005364

6. Arora, R. K. and N. C. V. Krishnamacharyulu, "Synthesis of unequally spaced arrays using dynamic programming," IEEE Trans. Antennas Propag., Vol. 16, No. 5, 593-595, 1968.
doi:10.1109/TAP.1968.1139250

7. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

8. Sanchez-Gomez, J., D. H. Covarrubias, and M. A. Panduro, "A synthesis of unequally spaced antenna arrays using legendre functions," Progress In Electromagnetics Research M, Vol. 7, 57-69, January 2009.
doi:10.2528/PIERM09032305

9. Mahmoud, K. R., "Synthesis of unequally-spaced linear array using modified central force optimisation algorithm," IET Microwaves, Antennas Propag., Vol. 10, No. 10, 1011-1021, 2016.
doi:10.1049/iet-map.2015.0801

10. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Antennas Propag. Soc. AP-S Int. Symp., No. 8, 119-122, 1985.

11. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1207-1210, 2007.
doi:10.1109/TAP.2007.893406

12. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of minimally subarrayed linear arrays via compressed sensing method," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 3, 487-491, 2019.
doi:10.1109/LAWP.2019.2894826

13. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for angular-limited scan arrays," Progress In Electromagnetics Research C, Vol. 68, 129-139, 2016.
doi:10.2528/PIERC16060602

14. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for reduced sidelobes in angle-limited scan arrays," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1969-1972, 2017.
doi:10.1109/LAWP.2017.2690824

15. Han, Y., C. Wan, W. Sheng, B. Tian, and H. Yang, "Array synthesis using weighted alternating projection and proximal splitting," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1006-1009, 2015.
doi:10.1109/LAWP.2015.2389804

16. Dai, D., M. Yao, H. Ma, W. Jin, and F. Zhang, "An effective approach for the synthesis of uniformly excited large linear sparse array," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 3, 377-380, 2018.
doi:10.1109/LAWP.2018.2790907

17. Lin, C., A. Qing, and Q. Feng, "Synthesis of unequally spaced antenna arrays by a new differential evolutionary algorithm," Int. J. Commun. Networks Inf. Secur., Vol. 1, No. 1, 20-25, 2009.

18. Bonabeau, E., M. Dorigo, D. de R. D. F. Marco, G. Theraulaz, and G. Theraulaz, "Swarm Intelligence: From Natural to Artificial Systems," Oxford University Press, No. 1, 1999.

19. Ur Rahman, S., Q. Cao, M. M. Ahmed, and H. Khalil, "Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 16, No. 2, 577-591, 2017.
doi:10.1590/2179-10742017v16i2913

20. Mandal, D. and Y. N. Tapaswi, "Radiation pattern synthesis of linear antenna arrays by amplitude tapering using genetic algorithm," 2011 IEEE Appl. Electromagn. Conf. AEMC 2011, 2011.

21. Holland, J. H., "Genetic algorithms," Sci. Am., Vol. 267, No. 1, 66-73, 1992.
doi:10.1038/scientificamerican0792-66

22. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks IV, Vol. 1000, 33, 1995.

23. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

24. Smail, M. K. and H. R. E. H. Bouchekara, "Particle swarm optimization versus genetic algorithms for wiring network diagnosis,", Vol. 52, No. 3, 771-779, 2004.
doi:10.1109/TAP.2004.825102

25. Cui, C. Y., Y. C. Jiao, and L. Zhang, "Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2444-2448, 2017.
doi:10.1109/LAWP.2017.2723568

26. Mesloub, S. and A. Mansour, "Hybrid PSO and GA for global maximization," Int. J. Open Probl. Comput. Sci. Math. IJOPCM, Vol. 2, No. 4, 597-608, 2009.

27. Ru, N. and Y. Jianhua, "A GA and particle swarm optimization based hybrid algorithm," 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1047-1050, 2008.