Vol. 100
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-03-26
HEMP Excited Shield Residual Electric Field Modeling Method Based on NARX Neural Network
By
Progress In Electromagnetics Research C, Vol. 100, 205-218, 2020
Abstract
To predict the residual electric field inside an electromagnetic (EM) shield under illumination of different HEMP waveforms, a method based on NARX neural network is proposed in this paper. The model can be established from input-output data of EM shield without knowing enclosure and internal structural details. To evaluate the precision of the prediction method, two error criteria based on energy and field amplitude are provided in this paper. As a numerical example, the double exponential pulse with 10% to 90% rise time of 2.5 ns, the pulse width at half maximum of 23 ns, and the corresponding residual electric field are taken as the training data. The EM simulation is used to establish the model of residual electric field inside the shield. The NARX neural network is then built and trained. Other double exponential pulses, with different rise times and pulse widths, and their residual field are taken as the checking data. The results show that the error of the prediction method is sufficiently small for actual use.
Citation
Zhizhen Zhu, Jing Yang, Yuewu Shi, Xin Nie, Linshen Xie, and Wei Wang, "HEMP Excited Shield Residual Electric Field Modeling Method Based on NARX Neural Network," Progress In Electromagnetics Research C, Vol. 100, 205-218, 2020.
doi:10.2528/PIERC20011302
References

1. Donald, R. V., "Electromagnetic pulse effects on a typical electric utility system," IEEE Trans. on Power Apparatus & Systems, Vol. 103, 2215-2221, 1984.

2. Liu, H., Y. Xi, and J. Yang, "Electromagnetic pulse effect analysis for doppler radar," Journal of Microwaves, Vol. S3, 309-311, 2012.

3. Kichouliya, R. and M. J. Thomas, "Interaction of high power electromagnetic pulses with power cables and electronic systems," IEEE International Symposium on EMC, 159-163, Jul. 2016.

4. Zhou, B., B. Chen, and L. Shi, EMP and EMP Protection, 288-289, National Defense Industry Press, 2003.

5. Liu, S., J. Liu, and X. Dong, Electromagnetic Shielding Effectiveness and Radar Absorbing Material, 83-86, Chemical Industry Press, 2007.

6. Kuo, C. and C. Kuo, "Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel sub gridding algorithm," IEEE Trans. on Electromagnetic Compatibility, Vol. 58, No. 5, 1595-1601, 2016.
doi:10.1109/TEMC.2016.2572210

7. D’Amore, M. and M. S. Sarto, "Theoretical and experimental characterization of the EMP-interaction with composite-metallic enclosures," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 2, 152-163, 2000.
doi:10.1109/15.852409

8. Araneo, R., "An efficient MoM formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures," IEEE Trans. on Electromagnetic Compatibility, Vol. 50, No. 2, 294-304, May 2008.
doi:10.1109/TEMC.2008.919031

9. Carpes, Jr., W. P., G. S. Ferreira, A. Raizer, L. Pichon, and A. Razek, "TLM and FEM methods applied in the analysis of electromagnetic coupling," IEEE Trans. Magn., Vol. 36, No. 4, 982-985, Jul. 2000.
doi:10.1109/20.877606

10. Rabat, A., P. Bonnet, K. E. K. Drissi, and S. Girard, "Analytical formulation for shielding effectiveness of a lossy enclosure containing apertures," IEEE Trans. on Electromagnetic Compatibility, Vol. 60, No. 5, 1384-1392, 2018.
doi:10.1109/TEMC.2017.2764327

11. Ianoz, M., "A review of HEMP activities in Europe (1970-1995)," IEEE Trans. on Electromagnetic Compatibility, Vol. 55, No. 3, 412-421, 2013.
doi:10.1109/TEMC.2013.2246793

12. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.
doi:10.2528/PIER11031101

13. Tahar Belkacem, F., M. Bensetti, M. Laour, A. Boutar, M. Djennah, D. Moussaoui, and B. Mazari, "The analytical, numerical and neural network evaluation versus experimental of electromagnetic shielding effectiveness of a rectangular enclosure with apertures," IEEE International Conference on Cybernetic Intelligent Systems (CIS 2010), Sept. 2010.

14. "Electromagnetic Compatibility (EMC)-Part 2: Environment --- Section 9: Description of HEMP environment-radiated disturbance,", IEC 61000-2-9 Ed. 1.0, 1996-2002.

15. Yu, S., "NEMP and NEMP protection,", M.S. Thesis, Dept. Mechantron. Eng., Xidian University, Xi’an, China, 2008.

16. Tesche, F. M., "A multi conductor model for determining the response of power transmission and distribution to HEMP," IEEE Trans. on Power Delivery, Vol. 4, No. 3, 1955-1964, 1989.
doi:10.1109/61.32695

17. Ricketts, L., W. J. E. Bridges, and J. Miletta, EMP Radiation and Protective Techniques, Wiley, New York, 1976.

18. Chen, S., X. X. Wang, and C. J. Harris, "NARX-based nonlinear system identification using orthogonal least squares basis hunting," IEEE Transactions on Control Systems Technology, Vol. 16, No. 1, 78-84, 2008.
doi:10.1109/TCST.2007.899728

19. Haykin, S., Neural Networks and Learning Machines, 3rd Ed., China Machine Press, 2011.

20. Hirschen, K. and M. Schafer, "Bayesian regularization neural networks for optimizing fluid flow processes," Computer Methods in Applied Mechanics and Engineering, Vol. 195, 481-500, 2006.
doi:10.1016/j.cma.2005.01.015

21. MacKay, D. J. C., "A practical Bayesian framework for back propagation networks," Neural Comput., Vol. 4, No. 3, 448-472, May 1992.
doi:10.1162/neco.1992.4.3.448

22. Khafaf, N. A. and A. El-Hag, "Bayesian regularization of neural network to predict leakage current in a salt fog environment," IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 25, No. 2, 686-693, 2018.
doi:10.1109/TDEI.2017.006936