Vol. 101
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-03
Tuneable Frequency Selective Surface
By
Progress In Electromagnetics Research C, Vol. 101, 13-28, 2020
Abstract
This paper is presented to provide an overview on frequency selective surfaces and techniques to achieve tune-ability in frequency selective surface (FSS). FSS array element with specific arrangement on the dielectric surface either transmits (pass-band) or reflects (stop-band) partially or completely with resonance of the structure in tune with the frequency of electromagnetic wave. Tuning devices like PIN or Varactor incorporated in the structure tune the performance. The recent researches on FSS structures classifying them into structural classification and mechanisms to change the operating resonance frequency dynamically by changing the bias of the tuning devices like PIN or Varactor diode have been studied and detailed in this review article. Tune-ability allows the FSS layer filter to adapt to spectral changes and to compensate for the best performance in terms of bandwidth, gain, and directivity. We also focused important performance parameters, particularly on how development in this field could facilitate invention in advanced electromagnetics.
Citation
Yukti Anand, and Ashok Mittal, "Tuneable Frequency Selective Surface," Progress In Electromagnetics Research C, Vol. 101, 13-28, 2020.
doi:10.2528/PIERC19123104
References

1. Vaid, S. and A. Mittal, "Wide-band dual sense circularly polarized resonant cavity antenna for X band applications," Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018.

2. Anwar, R. S., et al., "Frequency selective surfaces: A review," Applied Science, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689

3. Kotnala, A., P. Juyal, A. Mittal, and A. De, "Investigation of cavity reflex antenna using circular patch type FSS superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.
doi:10.2528/PIERB12042504

4. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103

5. Costa, F., A. Monorchio, and G. P. Vastante, "Tunable high-impedance surface with a reduced number of varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 11-13, 2011.
doi:10.1109/LAWP.2011.2107723

6. Costa, F., et al., "On the bandwidth ofhigh-impedance frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346

7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Vol. 29, Wiley Online Library, NJ, USA, 2000.
doi:10.1002/0471723770

8. Janaswamy, R. and S.-W. Lee, "Scattering from dipoles loaded with diodes," IEEE Trans. on Antennas & Radio Wave Propagat., Vol. 36, 1649-1651, 1988.
doi:10.1109/8.9722

9. Zhang, L., W. Li, G. Yang, and Q. Wu, A novel general structure of tuneable frequency selective surface without bias grid, National Natural Science Foundation of China (Grant No. 60971064), 2011.

10. Ourir, A., S. N. Burokur, and A. de Lustrac, "Electronically reconfigurable meta-material for compact directive cavity antennas," Electronics Letters, Vol. 43, No. 13, 698-700, IET, Jun. 21, 2007.
doi:10.1049/el:20071181

11. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "High-gain low side lobe level Fabry Perot cavity antenna with feed patch array," Progress In Electromagnetics Research C, Vol. 28, 223-238, 2012.
doi:10.2528/PIERC12031503

12. Wang, H., et al., "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Scientific Reports, Vol. 6, 23081, 2016.
doi:10.1038/srep23081

13. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, Jan. 2004.
doi:10.1109/LMWC.2003.820639

14. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A novel dual band Frequency Selective Surface (FSS),", 978-1-4244-2802-1/09/$25.00 c2009 IEEE.

15. Doken, B. and M. Kartal, "Tunable frequency surface design between 2.43 GHz and 6 GHz," An International Journal (ELELIJ), Vol. 6, No. 3, 1-8, Aug. 2017.

16. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

17. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 127-135, 2015.
doi:10.1109/MAP.2015.2470678

18. Rahmani-Shams, Y., S. Mohammd-Ali-Nezhad, A. N. Yeganeh, and S. H. Sedighy, "Dual band low profile and compact tuneable frequency selective serface with wide tuning range," Journal of Applied Physics, Vol. 123, 235301, 2018.
doi:10.1063/1.5023449

19. Doken, B. and M. Kartal, "An active frequency selective surface design having four different switchable frequency characteristics," Radio Engineering, Vol. 28, No. 1, 114-120, Apr. 2019.

20. Ourir, A., et al., Directive metamaterial-based subwavelength resonant cavity antennas — Applications for beam steering, Institut d'electronique fondamentale, Universite Paris Sud, UMR 8622 — CNRS, 91405 Orsay cedex, France, Available online Jun. 26, 2009.

21. Ghosh, S. and K. V. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 166-172, 2017.
doi:10.1109/TEMC.2017.2706359

22. Huang, X. G., Z. Shen, Q. Y. Feng, and B. Li, "Tunable 3-D bandpass frequency-selective structure with wide tuning range," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3297-3301, 2015.
doi:10.1109/TAP.2015.2428737

23. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi:10.2528/PIERB08031214

24. Boccia, L., et al., "Tunable frequency-selective surfaces for beam-steering applications," Electronics Letters, Vol. 45, No. 24, 1213-1215, Nov. 19, 2009.
doi:10.1049/el.2009.2577

25. Li, Y., L. Li, Y. Zhang, and C. Zhao, "Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 133-141, 2014.
doi:10.1109/TAP.2014.2367523