Vol. 104
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-24
Transient Response of Microstrip Patch Antenna Loaded on a Vehicle Platform Illuminated by Electromagnetic Pulse
By
Progress In Electromagnetics Research C, Vol. 104, 69-84, 2020
Abstract
This paper presents an efficient hybrid method consisting of nonuniform mesh finite-difference-time-domain (FDTD) method, thin wire model, and transmission line (TL) equations method, which is utilized to analyze transient responses of the microstrip patch antenna loaded on a vehicle platform illuminated by a high-power electromagnetic pulse (EMP). This hybrid method avoids over-fine mesh generation, thereby improving the computational efficiency and saving the computational memory. The accuracy and efficiency of this method are verified by comparing with the simulation results of traditional FDTD and computer simulation technology microwave studio (CST MWS). Then, considering the influence of the incident conditions of EMP and the support structure of antenna on the coupling effects of the antenna, the coupling responses of the 1.575 GHz microstrip antenna are discussed in terms of incident angles of EMP, heights of the support structure, top areas of the support structure, and different positions of the support structure on the platform. The obtained changing regularity of the transient responses is useful for further designing the installation structure of the antenna and electromagnetic protection against the external EMP.
Citation
Xiao Hu, Yang Qiu, Qinglin Xu, and Jin Tian, "Transient Response of Microstrip Patch Antenna Loaded on a Vehicle Platform Illuminated by Electromagnetic Pulse," Progress In Electromagnetics Research C, Vol. 104, 69-84, 2020.
doi:10.2528/PIERC19122303
References

1. Sieger, G. E., J. H. Yee, and D. J. Mayhall, "Computer simulation of nonlinear coupling of high- power microwaves with slots," IEEE Trans. Plasma Sci., Vol. 17, No. 4, 616-621, 1989.

2. Wang, J. G., Y. S. Chen, R. Y. Fan, H. Q. Yu, and D. B. Ge, "Numerical studies on nonlinear coupling of high-power microwave pulses into a cylindrical cavity," IEEE Trans. Plasma Sci., Vol. 24, No. 1, 193-197, 1996.

3. Hwang, S.-M., J.-I. Hong, and C.-S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008.

4. You, J. W., J. F. Zhang, W. H. Gu, W. Z. Cui, and T. J. Cui, "Numerical analysis of passive intermodulation arisen from nonlinear contacts in HPMW devices," IEEE Trans. Electromagn. Compat., Vol. 60, No. 5, 1470-1480, 2018.

5. Lertsirimit, C., D. R. Jackson, and D. R. Wilton, "An efficient hybrid method for calculating the EMC coupling to a device on a printed circuit board inside a cavity by a wire penetrating an aperture," Electromagnetics, Vol. 25, No. 7-8, 637-654, 2005.

6. Xie, H. Y., J. G.Wang, R. Y. Fan, and Y. N. Liu, "A hybrid FDTD-SPICE method for transmission lines excited by a nonuniform incident wave," IEEE Trans. Electromagn. Compat., Vol. 51, No. 3, 811-817, 2009.

7. Xie, H. Y., J. G. Wang, Y. Li, and H. F. Xia, "Efficient evaluation of multiconductor transmission lines with random translation over ground under a plane wave," IEEE Trans. Electromagn. Compat., Vol. 56, No. 6, 1623-1629, 2014.

8. Xie, H. Y., Y. Li, H. L. Qiao, and J. G. Wang, "Empirical formula of effective coupling length for transmission lines illuminated by E1 HEMP," IEEE Trans. Electromagn. Compat., Vol. 58, No. 2, 581-587, 2016.

9. Ye, Z., X.-Z. Xiong, C. Liao, and Y. Li, "A hybrid method for electromagnetic coupling problems of transmission lines in cavity based on FDTD method and transmission line equation," Progress In Electromagnetics Research M, Vol. 42, 85-93, 2015.

10. Ye, Z. H., C. Liao, X. Z. Xiong, and M. Zhang, "The research and application of a novel time domain hybrid method for EMI analysis of a shielded device with lumped circuit," IEEE Trans. Electromagn. Compat., Vol. 58, No. 4, 964-970, 2016.

11. Ye, Z. H., C. Liao, X. Z. Xiong, and M. Zhang, "A hybrid method combining the novel TD-SC technique and FDTD method for the EMI analysis of transmission line network," IEEE Trans. Electromagn. Compat., Vol. 59, No. 4, 1211-1217, 2017.

12. Elshiekh, H. A., et al. "Transient response of dipole antenna using SEM-FDTD method," Proc. 22th Nat. Radio Sci. Conf., 55-76, 2005.

13. Liu, Q. F., et al. "Wideband pulse response of monopole antenna under impact of an EMP," Proc. IEEE Int. Symp. Microw., Antennas, Propag. EMC Technol. Wirel. Commun., 136-139, 2011.

14. Zhang, Q., J. Wang, and W.-Y. Yin, "Transient electromagnetic response of a coaxial feeding monopole antenna mounted on a rectangular metallic enclosure illuminated by electromagnetic pulses (EMP)," PIERS Proceedings, 1124-1128, Kuala Lumpur, Malaysia, March 27-30, 2012.

15. Liu, Q. F., X. N. Zhao, and J. W. Liu, "Transient response analysis of the monopole antenna illuminated by an external EMP source," Proc. IEEE Int. Symp. Microw., Antennas, Propag. EMC Technol. Wirel. Commun., 333-337, 2013.

16. Liu, Q. F., W. Y. Yin, M. F. Xue, J. F. Mao, and Q. H. Liu, "Shielding characterization of metallic enclosures with multiple slots and a thin-wire antenna loaded: Multiple oblique EMP incidences with arbitrary polarizations," IEEE Trans. Electromagn. Compat., Vol. 51, No. 2, 284-292, 2009.

17. Liu, Q. F., W. Y. Yin, J. F. Mao, and Z. Z. Chen, "Accurate characterization of shielding effectiveness of metallic enclosures with thin wires and thin slots," IEEE Trans. Electromagn. Compat., Vol. 51, No. 2, 293-300, 2009.

18. Han, X., J. Wang, and Y.-S. Xia, "A novel field-line-circuit hybrid algorithm for transient responses prediction of transmission lines based on FDTD method," Progress In Electromagnetics Research M, Vol. 54, 163-173, 2017.

19. Wang, J., X. Han, K. Yang, and Y. S. Xia, "Hybrid FDTD method for studying electromagnetic coupling effects of transmission line networks," IEEE Trans. Electromagn. Compat., Vol. 59, No. 5, 1650-1653, 2017.

20. Seaux, J. P., A. Reineix, B. Jecko, and J. H. Hamelin, "Transient analysis of a space-borne microstrip patch antenna illuminated by an electromagnetic pulse," IEEE Trans. Electromagn. Compat., Vol. 33, No. 3, 224-233, 1991.

21. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, Artech House, Norwood, MA, 2005.

22. Jiang, H. L. and H. Arai, "Analysis of computation error in antenna's simulation by using non- uniform mesh FDTD," IEICE Trans. Commun., Vol. E83-B, No. 7, 1544-1552, 2000.

23. Maloney, J. G., K. L. Shlager, and G. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 289-292, 1994.

24. Cao, X., K. M. Luk, and C. Liang, "Analysis of a cylindrical patch antenna fed with coaxial probe using FDTD," Microw. Opt. Techn. Lett., Vol. 37, No. 6, 406-408, 2003.

25. MaKinen, R. M., V. Kangas, J. Lahtinen, and M. Kivikoski, "A coaxial probe feed model for FDTD," Microw. Opt. Techn. Lett., Vol. 34, No. 3, 193-198, 2002.

26. Tatematsu, A., "A technique for representing coaxial cables for FDTD based surge simulations," IEEE Trans. Electromagn. Compat., Vol. 57, No. 3, 488-495, 2015.

27. Umashankar, K. R., A. Taflov, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Trans. Antennas Propag., Vol. 35, No. 11, 1248-1257, 1987.

28. Noda, T. and S. Yokoyama, "Thin wire representation in finite difference time domain surge simulation," IEEE Trans. Power Del., Vol. 17, No. 3, 840-847, 2002.

29. MaKinen, R. M., J. S. Juntunen, and M. A. Kivikoski, "An improved thin-wire model for FDTD," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 5, 1245-1255, 2002.

30. Railton, C. J., D. F. Paul, I. J. Craddock, and G. S. Hilton, "The treatment of geometrically small structures in FDTD by the modification of assigned material parameters," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4129-4136, 2005.

31. Railton, C. J., D. L. Paul, and S. Dumanli, "The treatment of thin wire and coaxial structures in lossless and lossy media in FDTD by the modification of assigned material parameters," IEEE Trans. Electromagn. Compat., Vol. 48, No. 4, 654-660, 2006.

32. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, "An improved thin wire representation for FDTD computations," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3248-3252, 2008.

33. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An e±cient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Techn. Lett., Vol. 27, No. 5, 334-339, 2000.