Vol. 101
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-20
Thermal Characteristics of Hybrid Excitation Double Stator Bearingless Switched Reluctance Motor
By
Progress In Electromagnetics Research C, Vol. 101, 105-118, 2020
Abstract
In order to research the temperature distribution of a hybrid excitation double stator bearingless switched reluctance motor (HEDSBSRM), the finite element method (FEM) is used to conduct thermal modeling and analysis. First, 2D FEM is used to calculate the losses of the motor, including the core losses and copper losses of the windings. Then, in the thermal analysis module of ANSYS Workbench software, losses are used for calculation and analysis as the thermal load. Furthermore, in order to enhance the accuracy of modeling, this paper also considers the equivalent thermal conductivity of each part of the motor, and the equivalent insulation of the windings and surface convection heat transfer coefficient are also considered. Finally, the simulation results of motor temperature field distribution are analyzed and studied in detail. The thermal characteristic is also of guiding significance to the optimal design of the motor.
Citation
Qianwen Xiang, Liyun Feng, Yanjun Yu, and Kunhua Chen, "Thermal Characteristics of Hybrid Excitation Double Stator Bearingless Switched Reluctance Motor," Progress In Electromagnetics Research C, Vol. 101, 105-118, 2020.
doi:10.2528/PIERC19091105
References

1. Morrison, C. R., M. W. Siebert, and E. J. Ho, "Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor," IEEE Trans. Magn., Vol. 44, No. 12, 4626-4638, Dec. 2008.
doi:10.1109/TMAG.2008.2002891

2. Chen, L. and W. Hofmann, "Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2592-2600, Feb. 2012.
doi:10.1109/TIE.2011.2163289

3. Wei, P., D. Lee, and J. Ahn, "Design and analysis of double stator type bearingless switched reluctance motor," Transactions of the Korean Institute of Electrical Engineers, Vol. 60, No. 4, 746-752, 2011.
doi:10.5370/KIEE.2011.60.4.746

4. Xue, B., H. Wang, and J. Bao, "Design of novel 12/14 bearingless permanent biased switched reluctance motor," International Conference on Electrical Machines and Systems, 2655-2660, IEEE, Oct. 2014.

5. Cao, X., J. Zhou, C. Liu, and Z. Deng, "Advanced control method for single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement," IEEE Trans. Energy Convers., Vol. 32, No. 4, 1533-1543, Dec. 2017.
doi:10.1109/TEC.2017.2719160

6. Cao, X. and Z. Deng, "A full-period generating mode for bearingless switched reluctance generators," IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, 1072-1076, Mar. 2010.
doi:10.1109/TASC.2010.2041206

7. Zhang, J., H. Wang, L. Chen, C. Tan, and Y. Wang, "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Trans. Magn., Vol. 54, No. 1, 1-13, Oct. 2017.
doi:10.1109/TMAG.2017.2751546

8. Wang, H., J. Bao, B. Xue, and J. Liu, "Control of suspending force in novel permanent-magnet-biased bearingless switched reluctance motor," IEEE Trans. Ind. Electron., Vol. 62, No. 7, 4298-4306, Jul. 2015.
doi:10.1109/TIE.2014.2387799

9. Xiang, Q. W. and L. Feng, "Optimization and analysis of 24/16/8 hybrid excitation double stator bearingless switched reluctance motor," Progress In Electromagnetics Research C, Vol. 89, 191-205, 2019.
doi:10.2528/PIERC18112103

10. Liu, J., X. Zhang, H. Wang, and J. Bao, "Iron loss characteristic for the novel bearingless switched reluctance motor," 2013 International Conference on Electrical Machines and Systems (ICEMS), 586-592, Oct. 2013.

11. Su, B., X. Sun, L. Chen, Z. Yang, and K. Li, "Thermal modeling and analysis of bearingless permanent magnet synchronous motors," International Journal of Applied Electromagnetics and Mechanics, Vol. 56, No. 1, 115-130, 2017.
doi:10.3233/JAE-170112

12. Kral, C., A. Haumer, and S. B. Lee, "A practical thermal model for the estimation of permanent magnet and stator winding temperatures," IEEE Trans. Power Electron., Vol. 29, No. 1, 455-464, Jul. 2013.
doi:10.1109/TPEL.2013.2253128

13. Fang, L., G. Tan, S. Yin, and K. Hu, "Design and temperature field analysis of a novel structure line-start permanent magnetsynchronous motor," International Journal of Applied Electromagnetics and Mechanics, Vol. 51, No. 3, 1-12, Feb. 2016.

14. Kefalas, D. T. and A. Kladas, "Thermal investigation of permanent-magnet synchronous motor for aerospace applications," IEEE Trans. Ind. Electron., Vol. 61, No. 8, 4404-4011, Aug. 2014.
doi:10.1109/TIE.2013.2278521

15. Arbab, N., W. Wang, C. Lin, J. Hearron, and B. Fahimi, "Thermal modeling and analysis of a double-stator switched reluctance motor," IEEE Trans. Energy Convers., Vol. 30, No. 3, 1209-1217, Sept. 2015.
doi:10.1109/TEC.2015.2424400

16. Pan, J., F. Meng, and N. Cheung, "Core loss analysis for the planar switched reluctance motor," IEEE Trans. Magn., Vol. 50, No. 2, 813-816, Feb. 2014.
doi:10.1109/TMAG.2013.2285377

17. Sun, X., Z. Xue, X. Xu, and L. Chen, "Thermal analysis of a segmented rotor switched reluctance motor used as the belt-driven starter/generator for hybrid electric vehicles," Journal of Low Power Electronics, Vol. 12, No. 3, 277-284, Sept. 2016.
doi:10.1166/jolpe.2016.1436

18. Chen, H., Y. Xu, and H. Iu, "Analysis of temperature distribution in power converter for switched reluctance motor drive," IEEE Trans. Magn., Vol. 48, No. 2, 991-994, Feb. 2012.
doi:10.1109/TMAG.2011.2174968

19. Toda, H., K. Senda, S. Morimoto, and T. Hiratani, "Influence of various non-oriented electrical steels on motor efficiency and iron loss in switched reluctance motor," IEEE Trans. Magn., Vol. 49, No. 7, 3850-3853, Jul. 2013.
doi:10.1109/TMAG.2013.2242195

20. Garcia-Amoros, J., P. Andrada, B. Blanque, and M. Marin-Genesca, "Influence of design parameters in the optimization of linear switched reluctance motor under thermal constraints," IEEE Trans. Ind. Electron., Vol. 65, No. 2, 1875-1883, Feb. 2018.
doi:10.1109/TIE.2017.2686361

21. Li, Y., Research on loss and thermal analysis of switched reluctance motor, Nanjing University of Aeronautics and Astronautics, Nanjing, 2006.