Vol. 96
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-10-11
Synthesis and Experimentation of Voltage Compressor and Decompressor with Active Circuit
By
Progress In Electromagnetics Research C, Vol. 96, 139-151, 2019
Abstract
This paper introduces an innovative circuit theory of analog voltage compressor (AVC) and decompressor (AVD). This electronic function can also be assumed as an analog voltage converter. Analytically, it acts as power function synthesizer topology designed with an analog nonlinear circuit. The AVC/AVD topologies are based on an operational amplifier associated with resistor and non-linear diode components. Given the positive parameter a>0, the main x-y characteristic of the AVC/AVD is formulated by y=xa for the input and output x and y, respectively. The synthesis formulas allowing to determine the AVC/AVD parameters in function of a are established. To validate the original AVC/AVD concept, static and dynamic simulations and experimentations with a proof-of-concept circuit using operational amplifier UA741 are carried out. As expected, well correlated x1/2-AVC and x2-AVD characteristics are realized with the static testing for the voltage range varied from 0 to 9-V and 0 to 3-V for AVC and AVD circuits, respectively. The simulation and experimentation of dynamic test results are in good agreement for the sine wave voltages with frequency varied from DC to 1-kHz. The simulated and experimental results confirm the relevance of the developed compressor/decompressor analog circuit. The AVC/AVD functions for instrumentation system applications can be potentially applied to the amplitude matching especially for digital systems.
Citation
Qizheng Ji, Lili Wu, Jian Wang, Fayu Wan, and Blaise Ravelo, "Synthesis and Experimentation of Voltage Compressor and Decompressor with Active Circuit," Progress In Electromagnetics Research C, Vol. 96, 139-151, 2019.
doi:10.2528/PIERC19072404
References

1. Aircraft instruments and avionics, , , http://sarasotaavionics.com/category/flight-instruments, accessed 5 Dec. 2018.

2. Instrument Flying Handbook (FAA-H-8083-15B) Note, 2012, https://www.faa.gov/regulations policies/handbooks manuals/aviation/media/FAA-H-8083-15B.pdf, accessed 1 Dec. 2018.

3. Measuring Instruments for the Automotive Market, 2014, http://hiokiusa.com/wp-content/uploads/pdf/18033-Chirasi mobileE3-42M.pdf, accessed 1 Dec. 2018.

4. Quick Guide to Precision Measuring Instruments, E4329, 2003, https://www.mitutoyo.co.jp/eng/pdf/E4329 QuickGuide.pdf, accessed 1 Dec. 2018.
doi:10.1049/iet-smt.2017.0521

5. Rubio, J. J., J. Pieper, J. A. Meda-Campa~na, A. A. Aguilar, V. I. Rangel, and G. J. Gutierrez, "Modelling and regulation of two mechanical systems," IET Science, Measurement & Technology, Vol. 12, No. 5, 657-665, 2018.
doi:10.1049/iet-smt.2017.0383

6. Rong, H., L. Zou, C. Peng, J. Lv, Y. Chen, and Y. Zhu, "Adaptive regulation of the weights of REQUEST used to magnetic and inertial measurement unit based on hidden Markov model," IET Science, Measurement & Technology, Vol. 12, No. 5, 666-672, 2018.
doi:10.1049/iet-smt.2017.0014

7. Igder, M. A., T. Niknam, and M.-H. Khooban, "Bidding strategies of the joint wind, hydro, and pumped-storage in generation company using novel improved clonal selection optimisation algorithm," IET Science, Measurement & Technology, Vol. 11, No. 8, 991-1001, 2017.

8. Qi, J., A. Hahn, X. Lu, J. Wang, and C.-C. Liu, "Cybersecurity for distributed energy resources and smart inverters," IET Science, Measurement & Technology, Vol. 1, No. 1, 28-39, 2016.
doi:10.1049/iet-smt.2017.0125

9. Ahour, J. N., S. Seyedtabaii, and G. B. Gharehpetian, "Determination and localisation of turn-to-turn fault in transformer winding using frequency response analysis," IET Science, Measurement & Technology, Vol. 12, No. 3, 291-300, 2018.
doi:10.1049/iet-smt.2016.0418

10. Rajamani, R., M. Rajappa, K. Arunachalam, and B. Madanmohan, "Interturn short diagnosis in small transformers through impulse injection: on-line on-load self-impedance transfer function approach," IET Science, Measurement & Technology, Vol. 11, No. 8, 961-966, 2017.

11. Mpitziopoulos, A., "PSUs 101: A detailed look into power supplies,", 2015, https://www.tomshardware.com/reviews/power-supplies-101,4193-9.html, accessed 1 Dec. 2018.

12. Jordan, A., "Meeting transient specifications for electrical systems in military vehicles," Application Note, VICOR, http://cdn.vicorpower.com/documents/application notes/milvehicle appnote.pdf, accessed 1 Dec. 2018.

13. Cole, B., Transients, ESD and EMI in an untethered world, Nov. 2013, https://www.embedded.com/electronics-blogs/cole-bin/4424828/Transients{ESD-and-EMI-in-an-untethered-world, accessed 1 Dec. 2018.
doi:10.1109/TPAS.1984.318650

14. Don Russell, B., M. Stu, H. Stig, and N. Stig, "Substation electromagnetic interference, Part I: Characterization and description of the transient EMI problem," IEEE Transactions on Power Apparatus and Systems (PER), Vol. 4, No. 7, 1863-1870, 1984.

15. "Meeting military requirements for EMI and transient voltage spike suppression DC-DC con- verters and accessories," Application Note, AN0041.0, 1-13, http://www.vptpower.com/wp-content/uploads/downloads/2017/06/Meet-Mil-Req-EMI-and-transient-v-spike-supression-AN004-1.pdf, accessed 1 Dec. 2018.

16. Lepkowsk, J., "Identification of transient voltage noise sources,", Rev. 0, Semiconductor Components Industries, AND8228/D, 2005, http://www.onsemi.com/pub/Collateral/AND8228-D.PDF, accessed 1 Dec. 2018.
doi:10.1109/4234.681357

17. Xue, G., "End-to-end data paths: Quickest or most reliable?," IEEE Communications Letters, Vol. 2, No. 6, 156-158, 1998.
doi:10.1049/iet-smt.2017.0573

18. Fan, X., L. Li, Y. Zhou, N. Tang, Z. Zou, X. Li, G. Huang, and M. Liu, "Online detection technology for SF6 decomposition products in electrical equipment: A review," IET Science, Measurement & Technology, Vol. 12, No. 6, 707-711, 2018.
doi:10.1109/16.992868

19. Kapur, P., G. Chandra, J. P. McVittie, and K. C. Saraswat, "Technology and reliability constrained future copper interconnects --- Part II: performance implications," IEEE Trans. Electron Devices, Vol. 49, No. 4, 598-604, 2002.

20. Tripathi, J. N., R. K. Nagpal, and R. Malik, "Robust optimization and reflection gain enhancement of serial link system for signal integrity and power integrity," Int. J. of Design, Analysis and Tools for Circuits and Systems, Vol. 2, No. 1, 70-85, 2011.
doi:10.1109/TCSII.2015.2483198

21. Cordeiro, R. F., S. R. Oliveira Arnaldo, and J. M. N. Vieira, "All-digital transmitter with a mixed-domain combination filter," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 63, No. 1, 4-8, 2016.

22. Sharma, S. and T. Ytterdal, "In-probe ultrasound beamformer utilizing switched-current analog RAM," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 62, No. 6, 521-571, 2015.
doi:10.1109/TCSII.2017.2717044

23. Jeon, B.-K., S.-K. Hong, and O.-K. Kwon, "A low-power 12-bit extended counting ADC without calibration for CMOS image sensors," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 7, 824-828, 2018.
doi:10.1109/TCSII.2015.2468920

24. Gebreyohannes, F. T., A. Frappeand, and A. Kaiser, "A Configurable Transmitter Architecture for IEEE 802.11ac and 802.11ad Standards," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 1, 9-13, 2016.

25. Tadic, N., A. Dervic, M. Erceg, B. Goll, and H. Zimmermann, "A 54.2 dB current gain dynamic range, 1.78 GHz gain-bandwidth product CMOS voltage-controlled current amplifier/attenuator," IEEE Transactions on Circuits and Systems II: Express Briefs, (early access), 824-828, 2018.
doi:10.1109/TCSI.2011.2123550

26. El-Gabaly, A. M. and C. E. Saavedra, "A quadrature pulse generator for short-range UWB vehicular radar applications using a pulsed oscillator and a variable attenuator," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 10, 2285-2295, 2011.

27. Stukach, O. V., "Modeling of attenuator structures on field effect transistors with minimal phase shift at attenuation regulation," Power Engineering, Bulletin of the Tomsk Polytechnic University, Vol. 311, No. 4, 90-93, 2007.

28. Barta "Automatic return-loss optimization of a variable FET attenuator,", Patent US4975604, 1990, patents.google.com/patent/US4975604, accessed 1 Oct. 2018.

29. Ehlers, E. R. and D. J. Dascher, "Broadband step attenuator with improved time domain performance,", Patent US20060279376, 2006, http://www.freepatentsonline.com/y2006/0279376.html, accessed 1 Oct. 2018.

30. Huang, F.-H. and J.-M. R. Mourant, "Analog control integrated FET based variable attenuators,", Patent US7205817,327/308, 2007, patents.google.com/patent/US7205817, accessed 1 Oct. 2018.

31. Hwang, H. S., Y. S. Na, M. S. Kim, B. H. Jo, and K. S. Park, "Step attenuator,", Patent US7525395, 2009, patents.google.com/patent/US7525395, 2009-04-28, accessed 1 Oct. 2018.

32. Vice, M. W., "Four-state digital attenuator having two-bit control interface,", Patent US7786822, 2010, patents.google.com/patent/US7786822, accessed 1 Oct. 2018.

33. Staudinger "Electronic circuits with variable attenuators and methods of their operation,", Patent US8674746, 2014, patents.google.com/patent/US8674746, accessed 1 Oct. 2018.

34. Sharma, V., "Low phase shift, high frequency attenuator,", Patent US9787286B2, 2017, patents.google.com/patent/US9787286, accessed 1 Oct. 2018.
doi:10.1109/TADVP.2008.2011560

35. Buckwalter, J. F., "Predicting microwave digital signal integrity," IEEE Trans. Adv. Packaging, Vol. 32, No. 2, 280-289, 2009.
doi:10.1109/92.365450

36. Srivastava, M. B. and M. Potkonjak, "Optimum and heuristic transformation techniques for simultaneous optimization of latency and throughput," IEEE Trans. Very Large Scale Integration (VLSI) Systems, Vol. 3, No. 1, 2-19, 1995.
doi:10.1109/TCSI.2014.2361035

37. Liu, W.-C., T.-C. Wei, Y.-S. Huang, C.-D. Chan, and S.-J. Jou, "All-digital synchronization for SC/OFDM mode of IEEE 802.15.3c and IEEE 802.11ad," IEEE Trans. Circuits and Systems I: Regular Papers, Vol. 62, No. 4, 545-553, 2015.
doi:10.1002/cta.818

38. Eudes, T. and B. Ravelo, "Analysis of multi-gigabits signal integrity through clock H-tree," Int. J. Circ. Theor. Appl., Vol. 41, No. 5, 535-549, May 2013.
doi:10.1002/cta.2516

39. Hasanzadeh, M. R. and A. Abrishamifar, "A novel OTA compensation approach suitable for CT-ΔΣ modulators," Int. J. Circ. Theor. Appl., Vol. 46, No. 12, 2248-2265, Dec. 2018.

40. Figueiredo, M., J. Goes, L. B. Oliveira, and A. Steiger-Garcao, "Low voltage low power fully differential self-biased 1.5-bit quantizer with built-in thresholds," Int. J. Circ. Theor. Appl., Vol. 46, No. 12, 681-691, Dec. 2018.