Vol. 84
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-15
Compact UWB MIMO Antenna with Metamaterial-Inspired Isolator
By
Progress In Electromagnetics Research C, Vol. 84, 61-74, 2018
Abstract
In this paper, a dual-band complementary split ring resonator (C-SRR) is used to improve the band-notch effect relative to the traditional SRR. Meanwhile, we employ a brand-new SRR unit cell as an isolator for decoupling among multiple bands without enlarging the dimensions of the multiple-input-multiple-output (MIMO) antenna. Therefore, a compact ultra-wideband MIMO antenna is developed. Compared with the previous work, the proposed MIMO antenna also has obvious advantages such as high isolation and miniaturization (the dimensions are only 13.5 mm × 34 mm). The metamaterial-inspired UWB MIMO antenna presented here is suitable for small scaled mobile devices.
Citation
Fei Wang, Zhaoyun Duan, Shifeng Li, Zhan-Liang Wang, and Yu-Bin Gong, "Compact UWB MIMO Antenna with Metamaterial-Inspired Isolator," Progress In Electromagnetics Research C, Vol. 84, 61-74, 2018.
doi:10.2528/PIERC18030201
References

1. Bolin, T., A. Derneryd, G. Kristensson, et al. "Two antenna receive diversity performance in indoor environment," Electron. Lett., Vol. 41, No. 22, 1205-1206, 2005.
doi:10.1049/el:20053365

2. Ko, S. C. K. and R. D. Murch, "Compact integrated diversity antenna for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 6, 954-960, 2001.
doi:10.1109/8.931154

3. "First report and order in the matter of revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems FCC,", ET-Docket 98-153, 2002.
doi:10.1109/8.931154

4. See, T. S. P. and Z. N. Chen, "An ultrawideband diversity antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1597-1605, 2009.
doi:10.1109/TAP.2009.2019908

5. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103

6. Rajagopalan, A., G. Gupta, A. S. Konanur, et al. "Increasing channel capacity of an ultrawideband MIMO system using vector antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2880-2887, 2007.
doi:10.1109/TAP.2007.905938

7. Khan, M. S., A. D. Capobianco, A. L. Najam, I. Shoaib, E. Autizi, and M. F. Shafique, "Compact UWB-MIMO antenna array with a floating digitated decoupling structure," IET Microw., Antennas & Propag., Vol. 8, No. 10, 747-753, 2014.
doi:10.1049/iet-map.2013.0672

8. Zhang, S., Z. N. Ying, J. Xiong, et al. "Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1279-1282, 2009.
doi:10.1109/LAWP.2009.2037027

9. Liu, L., S. W. Cheung, and T. I. Yuk, " Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4257-4264, 2013.
doi:10.1109/TAP.2013.2263277

10. Chacko, B. P., G. Augustin, and T. A. Denidni, "Uniplanar slot antenna for ultrawideband polarization-diversity applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 88-91, 2013.
doi:10.1109/LAWP.2013.2242841

11. Iqbal, A., O. A. Saraereh, A.W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, 2018.
doi:10.1109/ACCESS.2017.2785232

12. Duan, Z., B.-I. Wu, J.-A. Kong, F. Kong, and S. Xi, "Enhancement of radiation properties of a compact planar antenna using transformation media as substrates," Progress In Electromagnetics Research, Vol. 83, 375-384, 2008.
doi:10.2528/PIER08062703

13. Wang, F., Z. Duan, X. Tang, et al. "Compact high isolation WLAN MIMO antenna based on CRLH," iWEM 2015, 1-2, Taipei, China, 2015.

14. Yang, F. and Y. Rahmat-Sami, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

15. Yang, L., M. Y. Fan, F. L. Chen, et al. "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

16. Rani, M. S. A., S. K. A. Rahim, H. Rezaie, et al. "Directional UWB antenna with a parabolic ground structure and split ring resonator for a 5.80 GHz band notch," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 1, 14-22, 2013.
doi:10.1080/09205071.2012.737456

17. Wang, F., Z. Y. Duan, T. Tang, et al. "A new metamaterial-based UWB MIMO antenna," IEEE IWS 2015, 1-4, Shenzhen, China, 2015.

18. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703

19. Li, Q., A. P. Feresidis, M. Mavridou, et al. "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1170-1173, 2015.

20. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.
doi:10.1109/TAP.2010.2052560

21. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Decorrelation of two closely spaced antennas with a metamaterial AMC surface," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1414-1417, 2008.
doi:10.1002/mop.23365

22. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 17, 458-462, 2018.
doi:10.1109/LAWP.2018.2795018

23. Ketzaki, D. A. and T. V. Yioultsis, "Metamaterial-based design of planar compact MIMO monopoles," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2758-2766, 2013.
doi:10.1109/TAP.2013.2243813

24. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338

25. Khan, M. S., A.-D. Capobianco, S. M. Asif, et al. "A compact CSRR enabled UWB MIMO antenna," IEEE Antennas Wireless Propag. Lett., Vol. 58, 808-812, 2016.

26. Duan, Z., J. S. Hummelt, M. A. Shapiro, et al. "Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices," Phys. Plasmas, Vol. 21, No. 10, 103301, 2014.
doi:10.1063/1.4897392

27. Pendry, J. B., A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

28. Deng, J. Y., L. X. Guo, and X. L. Liu, "An ultrawideband MIMO antenna with a high isolation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 182-185, 2016.
doi:10.1109/LAWP.2015.2437713

29. Mao, C. X. and Q. X. Chu, "Compact co-radiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4474-4480, 2014.
doi:10.1109/TAP.2014.2333066

30. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2015.

31. Li, J. F., Q. X. Chu, Z. H. Li, et al. "Compact dual band-notched UWB MIMO antenna with high isolation ," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4759-4766, 2013.
doi:10.1109/TAP.2013.2267653

32. Liu, L., S. W. Cheung, Y. F. Weng, and T. I. Yuk, "Cable effects on measuring small planar UWB monopole antennas," Ultra Wideband Current Status and Future Trends, edited by Mohammad Abdul Matin, 2012.

33. Manteghi, M. and Y. Rahmat-Samii, "Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 466-474, 2005.
doi:10.1109/TAP.2004.838794

34. Hallbjorner, P., "The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wireless Propag. Lett., Vol. 4, 97-99, 2005.
doi:10.1109/LAWP.2005.845913

35. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 183-186, 2011.
doi:10.1109/LAWP.2011.2125773