Vol. 82
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-03-13
Drastic Improvement of Change Detection Results with Multilook Complex SAR Images Approach
By
Progress In Electromagnetics Research C, Vol. 82, 55-66, 2018
Abstract
Coherent Change Detection (CCD) is a powerful technique that uses Synthetic Aperture Radar (SAR) coherence to measure subtle ground changes in the imaged area. Unfortunately, the coherence estimator is biased for low coherence values, resulting in a highly degraded change detection performance. The spatial multilooking technique is typically used to improve coherence estimation but at the expense of spatial resolution. Actually, there are few SAR satellites that are able to deliver Multiple Look Complex (MLC) SAR images, which provide noticeable coherence bias reduction. In the present work, we investigate detection performance improvement that can be obtained through the use of MLC SAR images. The detection probability and false alarm are evaluated using experimental very high-resolution SAR data. After SAR image focusing and coherence estimation, the results indicate that the use of MLC SAR images with four looks allows for nearly 60% higher detection probability in the case of a low false alarm rate.
Citation
Azzedine Bouaraba, Aichouche Belhadj-Aissa, and Damien Closson, "Drastic Improvement of Change Detection Results with Multilook Complex SAR Images Approach," Progress In Electromagnetics Research C, Vol. 82, 55-66, 2018.
doi:10.2528/PIERC17112701
References

1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Systems and Signal Processing, John Wiley & Sons, NY, 1991.

2. Massonnet, D. and J. C. Souyris, Imaging with Synthetic Aperture Radar, EPFL Press, 2008.
doi:10.1201/9781439808139

3. Zebker, H. A. and R. M. Goldstein, "Topographic mapping from interferometric synthetic aperture radar observations," J. Geophysics Research, Vol. 9, No. 5, 4993-4999, 1986.
doi:10.1029/JB091iB05p04993

4. Massonnet, D. and K. L. Feigl, "Radar interferometry and its applications to changes in the Earth’s surface," Review of Geophysics, Vol. 36, 441-500, 1998.
doi:10.1029/97RG03139

5. Preiss, M., D. A. Gray, and N. J. S. Stacy, "Detecting scene changes using synthetic aperture radar interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2041-2054, 2005.
doi:10.1109/TGRS.2006.872910

6. Fan, C., X.-T. Huang, T. Jin, J.-G. Yang, and D. X. An, "Novel pre-processing techniques for coherence improving in along-track dual-channel low frequency SAR," Progress In Electromagnetics Research, Vol. 128, 171-193, 2012.
doi:10.2528/PIER12011502

7. Jungkyo, J., et al. "Damage-mapping algorithm based on coherence model using multitemporal polarimetric interferometric SAR data," IEEE Transactions on Geoscience and Remote Sensing, 2017, DOI: 10.1109/TGRS.2017.2764748.

8. Touzi, R., A. Lopes, J. Bruniquel, and P. W. Vachon, "Coherence estimation for SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 1, 135-149, 1999.
doi:10.1109/36.739146

9. Martinez, C. L., "Coherence estimation in synthetic aperture radar data based on speckle noise modeling," Applied Optics, Vol. 46, No. 4, 544-558, 2007.
doi:10.1364/AO.46.000544

10. Bouaraba, A., D. Borghys, A. Belhadj-Aissa, M. Acheroy, and D. Closson, "Improving CCD performance by the use of local fringe frequencies," Progress In Electromagnetics Research C, Vol. 32, 123-137, 2012.
doi:10.2528/PIERC12070305

11. Bouaraba, A., et al. "InSAR phase filtering via joint subspace projection method: Application in change detection," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 10, 1817-1820, 2014.
doi:10.1109/LGRS.2014.2310493

12. Bouaraba, A., et al. "man-made change detection using high resolution Cosmo-SkyMed SAR interferometry," Arabian Journal for Science and Engineering, Vol. 41, No. 1, 201-208, 2016.
doi:10.1007/s13369-015-1736-4

13. Wahl, D. E., D. A. Yocky, C. V. Jakowatz, and K. M. Simonson, "A new maximum-likelihood change estimator for two-pass SAR coherent change detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 4, 2460-2469, 2016.
doi:10.1109/TGRS.2015.2502219

14. Karsten, S. and H. Andrew, "InSAR processing for volcano monitoring and other near-real time applications," Journal of Geophysical Research: Solid Earth, Vol. 121, No. 4, 2947-2960, 2016.
doi:10.1002/2015JB012752

15. Cumming, I. G., et al. "Interpretations of the Omega-K algorithm and comparisons with other algorithms," IEEE Geoscience and Remote Sensing Symposium Proceedings, 1455-1458, 2003.

16. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, New York, 2005.