Vol. 80
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-25
Determination of Surface and Sub-Surface Cracks Location in Beams Using Rayleigh-Waves
By
Progress In Electromagnetics Research C, Vol. 80, 233-247, 2018
Abstract
Structural buildings are vulnerable to many types of damages that can occur through their life period. These damages may cause structure failure or at least decrease its efficiency. Dangerous damages occurring in concrete structures are surface opening cracks or sub-surface cracks. So, the determination of location of these cracks is very important, because the crack location is one of the important factors that affect the degree of danger of the damage. The Rayleigh waves have many advantages, as they can be easily recognized due to the maximum energy of the wave components. So, it was used to determine the crack location in the previous works. In this paper, two different techniques are used to determine the crack location; one of them depends on the healthy case, and the other deals only with the cracked case. Common finite element software (Abaqus) is used to model the numerical simulation, and the experimental test is also performed to verify the obtained numerical results. Good agreement between the simulated and experimental results is obtained by employing both techniques to find the crack location.
Citation
Atef Eraky, Rania Samir, Walid Saber El-Deeb, and Abdallah Salama, "Determination of Surface and Sub-Surface Cracks Location in Beams Using Rayleigh-Waves," Progress In Electromagnetics Research C, Vol. 80, 233-247, 2018.
doi:10.2528/PIERC17101606
References

1. Lee, Y. H. and T. Oh, "The measurement of P-, S-, and R-wave velocities to evaluate the condition of reinforced and prestressed concrete slabs," Advances in Materials Science and Engineering, Vol. 2016, 14 pages, Article ID 1548215, 2016, doi:10.1155/2016/1548215.

2. Rix, G., C. Lai, and S. Foti, "Simultaneous measurement of surface wave dispersion and attenuation curves," Geotechnical Testing Journal, Vol. 24, No. 4, 350-358, 2001.
doi:10.1520/GTJ11132J

3. Joseph, O. and J. Laurence, Characterization of Rayleigh Wave Propagation in Concrete Using Laser Ultrasonic, Springer, 1998.

4. Liu, P. L., K. H. Lee, T. T. Wu, and M. K. Kuo, "Scan of surface-opening cracks in reinforced concrete using transient elastic waves," NDT & E International, Vol. 34, No. 3, 219-226, 2001.
doi:10.1016/S0963-8695(00)00061-X

5. Lei, W. and F. G. Yuan, "Active damage localization technique based on energy propagation of Lamb waves," Smart Structures and Systems, Vol. 3, No. 2, 201-217, 2006.

6. Liu, X., L. Bo, Y, Liu, Y. Zhao, J. Zhang, N. Hu, and M. Deng, "Location identification of closed crack based on Duffing oscillator transient transition," Journal of Sound and Vibration, Vol. 100, 384-397, 2017.
doi:10.1016/0022-460X(88)90312-4

7. Liu, X., L. Bo, Y, Liu, Y. Zhao, J. Zhang, N. Hu, and M. Deng, "Detection of micro-cracks using nonlinear lamb waves based on the Duffing-Holmes system," Journal of Sound and Vibration, Vol. 406, 175-186, 2017.
doi:10.1016/j.jsv.2017.05.044

8. Scalerandi, M., S. Gliozzi, and C. Bruno, "Detection and location of cracks using loss of reciprocity in ultrasonic waves propagation," Journal of the Acoustical Society of America, Vol. 131, EL81, 2012.
doi:10.1121/1.3664103

9. Soorgee, M. H. and K. A. Yousef, "Crack diagnosis in beams using propagated waves and Hilbert Huang transformation," 4th International Conference on NDT, Hellenic Society for NDT, China, Crete Greece, 2007.

10. Ben Khalifa, W., K. Jezzine, and S. Grondel, "3D modeling of Rayleigh wave acoustic emission from a crack under stress," Acoustics 2012 Nantes Conference, French Acoustic Society, paper 000593, 2627–2632, 2013.

11. Moser, F., L. Jacobs, and J. Qu, "Modeling elastic wave propagation in waveguides with the finite element method," NDT & E International, Vol. 32, 225-234, 1999.
doi:10.1016/S0963-8695(98)00045-0

12. Olsson, D., "Numerical simulations of energy absorbing boundaries for elastic wave propagation in thick concrete structures subjected to impact loading,", Master of Science Thesis, Umea University, 2012.

13. Zerwer, A., M. A. Polak, and J. C. Santamarina, "Detection of surface breaking cracks in concrete members using rayleigh waves," Journal of Environmental and Engineering Geophysics, JEEG, Vol. 10, No. 3, 295-306, September 2005.
doi:10.2113/JEEG10.3.295

14. Iodice, M., J. Muggleton, and E. Rustighi, "The detection of vertical cracks in asphalt using seismic surface wave methods," Journal of Physics: Conference Series, Vol. 744, 2016.

15. Delrue, S. and V. Aleshin, "2D modeling for acoustic waves in solids with frictional cracks," 23rd French Conference of Mechanics, 2017.

16. Haw, K. C., M. Shohei, and S. Tomoki, "Characterization of deep surface opening crack in concrete," ACI Material Journal, Vol. 107, No. 3, 306-311, 2010.

17. Foo, W. L., S. L. Kok, and K. C. Hwa, "Determination and extraction of Rayleigh-waves for concrete cracks characterization based on matched filtering of center of energy," Journal of Sound and Vibration, Vol. 363, 303-315, 2016.

18. Foo, W. L., S. L. Kok, and K. C. Hwa, "Assessment of reinforced concrete surface breaking crack using Rayleigh wave measurement," Journal of Sensors, Vol. 16, No. 3, 337, 2016.
doi:10.3390/s16030337

19. Gang, W., "Beam damage uncertainty quantification using guided Lamb wave responses," Journal of Intelligent Material Systems and Structure, special issue, DOI: 10.1177/1045389X17704911, 2017.

20. Dimitrina, K., "Vibration-based methods for detecting a crack in a simply supported beam," Journal of Theoretical and Applied Mechanics, Vol. 44, No. 4, 69-82, 2014.
doi:10.2478/jtam-2014-0023

21. Li, B., X. Chen, J. Ma, and Z. He, "Detection of crack location and size in structures using wavelet finite element methods," Journal of Sound and Vibration, Vol. 285, No. 5, 767-782, 2005.
doi:10.1016/j.jsv.2004.08.040

22. Mehta, P., A. Kureshi, S. Lad, A. Patel, and D. Sharma, "Detection of cracks in a cantilever beam using signal processing and strain energy based model," Materials Science and Engineering, Vol. 234, 012008, doi:10.1088/1757-899X/234/1/012008, 2017.

23. Yong, J., L. Bing, Z. Zhou, and C. Xue, "Identification of crack location in beam structures using wavelet transform and fractal dimension," Shock and Vibration, Vol. 2015, Article ID 832763, 2015.