Vol. 77
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-21
Near Field Shielding of a Wireless Power Transfer (WPT) Current Coil
By
Progress In Electromagnetics Research C, Vol. 77, 39-48, 2017
Abstract
The configuration of an infinite planar conductive shield is examined when it is excited by an electromagnetic near field generated by a coil current source as that of a wireless power transfer (WPT) system. The analytical expressions of the electromagnetic field based on the transmission theory of shielding are given for different frequencies and different incidence angles of the near field generated by the coil current, assuming the conductive planar shield placed in the close proximity of the coil. The obtained results are discussed and compared with other traditional analytical and numerical solutions.
Citation
Mauro Feliziani, Silvano Cruciani, Tommaso Campi, and Francesearomana Maradei, "Near Field Shielding of a Wireless Power Transfer (WPT) Current Coil," Progress In Electromagnetics Research C, Vol. 77, 39-48, 2017.
doi:10.2528/PIERC17042804
References

1. Schelkunoff, S. A., Electromagnetic Waves, Van Nostrand Company, New York, 1943.

2. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Trans. Electromag. Compat., Vol. 9, No. 1, 6-18, Mar. 1967.
doi:10.1109/TEMC.1967.4307447

3. Moser, J. R., "Low-frequency low-impedance electromagnetic shielding," IEEE Trans. Electromag. Compat., Vol. 30, No. 3, 202-210, Aug. 1988.
doi:10.1109/15.3298

4. Bannister, P. R., "New theoretical expressions for predicting shielding effectiveness for the plane shield case," IEEE Trans. Electromag. Compat., Vol. 10, No. 1, 2-7, Mar. 1968.
doi:10.1109/TEMC.1968.302900

5. Bannister, P. R., "Further notes for predicting shielding effectiveness for the plane shield case," IEEE Trans. Electromag. Compat., Vol. 11, No. 2, 50-53, May 1969.
doi:10.1109/TEMC.1969.303010

6. Whitehouse, A. C. D., "Screening: New wave impedance for the transmission-line analogy," Proc. of IEEE, Vol. 116, No. 7, 1159-1164, Jul. 1969.

7. Wait, J. R., "Image theory of a quasistatic magnetic dipole over a dissipative half-space," Electronics Letters, Vol. 5, No. 13, 281-282, Jun. 1969.
doi:10.1049/el:19690214

8. Nishikata, A. and A. Sugiura, "Analysis for electromagnetic leakage through a plane shield with an arbitrarily-oriented dipole source," IEEE Trans. Electromag. Compat., Vol. 34, No. 3, 284-291, Aug. 1992.
doi:10.1109/15.155843

9. Schultz, R. B., V. C. Plantz, and D. E. Brush, "Shielding Theory and Practice," IEEE Trans. Electromag. Compat., Vol. 30, No. 3, 187-201, Aug. 1988.
doi:10.1109/15.3297

10. Olsen, R. G., "Some observations about shielding extremely low-frequency magnetic fields by finite width shields," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 460-468, Aug. 1996.
doi:10.1109/15.536076

11. Frix, W. M. and G. G. Karaday, "A circuital approach to estimate the magnetic field reduction of nonferrous metal shields," IEEE Trans. Electromag. Compat., Vol. 39, No. 1, 24-32, Feb. 1997.
doi:10.1109/15.554692

12. Du, Y., T. C. Cheng, and A. S. Farag, "Principles of power-frequency magnetic field shielding with flat sheets in a source of long conductors," IEEE Trans. Electromag. Compat., Vol. 38, No. 3, 450-459, Aug. 1996.
doi:10.1109/15.536075

13. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, Jul. 2007.
doi:10.1126/science.1143254

14. Kim, J., J. Kim, S. Kong, H. Kim, I.-S. Suh, N. P. Suh, D.-H. Cho, J. Kim, and S. Ahn, "Coil design and shielding methods for a magnetic resonant Wireless Power Transfer system," Proc. IEEE, Vol. 101, No. 6, 1332-1341, Jun. 2013.
doi:10.1109/JPROC.2013.2247551

15. Cruciani, S. and M. Feliziani, "Mitigation of the magnetic field generated by a wireless power transfer (WPT) system without reducing the WPT efficiency," EMC Europe — Int. Symposium on EMC, Bruges, Belgium, Sept. 2–6, 2013.

16. Campi, T., S. Cruciani, and M. Feliziani, "Magnetic shielding of wireless power transfer systems," EMC’14,/Tokyo, Proc of 2014 Int. Symp. Electromag. Compat., Tokyo, Japan, May 12–16, 2014.

17. Babic, S. I., J. Martinez, C. Akyel, and B. Babic, "Mutual inductance calculation between misalignment coils for wireless power transfer of energy," Progress In Electromagnetics Research, Vol. 38, 91-102, 2014.
doi:10.2528/PIERM14073007

18. Poon, A. S. Y., "A general solution to wireless power transfer between two circular loop," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
doi:10.2528/PIER14071201

19. Campi, T., S. Cruciani, V. De Santis, and M. Feliziani, "EMF safety and thermal aspects in a pacemaker equipped with a wireless power transfer system working at low frequency," EEE Trans. Microw. Th. Techn., Vol. 64, No. 2, 375-382, Feb. 2016.

20. Campi, T., S. Cruciani, V. De Santis, F. Palandrani, A. Hirata, and M. Feliziani, "Wireless power transfer charging system for AIMDs and pacemakers," IEEE Trans. Microw. Th. Techn., Vol. 64, No. 2, 633-642, Feb. 2016.
doi:10.1109/TMTT.2015.2511011

21. Simpson, J. C., J. E. Lane, C. D. Immer, and R. C. Youngquist, "Simple analytic expressions for the magnetic field of a circular current loop," NASA Technical Report 2001, NASA/TM-2013-217919, Available online: http://ntrs.nasa.gov/search.jsp?R=20140002333.

22. Griffith, J. M. and G. W. Pan, "Time harmonic fields produced by circular current loops," IEEE Trans. Magnetics, Vol. 47, No. 8, 2029-2033, Aug. 2011.
doi:10.1109/TMAG.2011.2132731

23. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., J. Wiley, NY, 2005.

24. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, J. Wiley, Wiley Interscience, Hoboken, NJ, 2008.
doi:10.1002/9780470268483

25. Feliziani, M., F. Maradei, and G. Tribellini, "Field analysis of penetrable conductive shields by the Finite-Difference Time-Domain Method with Impedance Network Boundary Conditions (INBC’s)," IEEE Trans. Electromag. Compat., Vol. 41, No. 4, 307-319, Nov. 1999.
doi:10.1109/15.809801

26. Buccella, C., M. Feliziani, F. Maradei, and G. Manzi, "Magnetic field computation in a physically large domain with thin metallic shields," IEEE Trans. Magnetics, Vol. 41, No. 5, 1708-1711, May 2005.
doi:10.1109/TMAG.2005.846059

27. Feliziani, M., "Subcell FDTD modeling of field penetration through lossy shields," IEEE Trans. Electromag. Compat., Vol. 54, 299-307, 2012.
doi:10.1109/TEMC.2011.2160982