Vol. 69
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-11-23
Design of Continuous Beam Steerable and Scalable Unit Module for Wireless Power Transmission Using Injection-Locked Oscillator Array
By
Progress In Electromagnetics Research C, Vol. 69, 169-179, 2016
Abstract
Long-range wireless power transmission (WPT) is implemented with the phased array transmitter technology, which has been extensively applied in the field of the radar systems. The cost of a conventional phased array transmitter module scales up in proportion to the number of antenna elements, as the massive number of transmit channels results in the increasing complexity of hardware and feeding antenna elements. Besides, the conventional phase-shifting transmitter architecture has lower DC to RF power conversion efficiency due to the insertion loss of power combining network at microwave frequency. In this paper, the concept of spatial power combining transmitter is utilized, and the upconversion circuit is greatly simplified to an injection locked oscillator. Our WPT system is implemented with the technology of oscillator array antenna at 2.4 GHz, which converts DC power to RF power and radiates into the air directly. The feedback voltage controlled oscillator (VCO) is implemented as the microwave source using a off-the-shelf bandpass filter, and the external signal is injected to the oscillator via a microstrip coupler. {The oscillator core shows the DC-to-RF conversion efficiency of 45.87% with the injected power of 0 dBm at 2.4 GHz. Then the digital phase shifter is used to phase shifting the injected signal to extend the beam coverage. From the link budget analysis, the overall DC-to-DC efficiency of our highly-integrated system shows 1.5 times (0.22%) of the conventional phased array (0.15%) when the separation between the transmit array and the receive horn antenna is 1.2 meter. Therefore, as an modularized array, the proposed system demonstrates the promising capability of upscaling to an efficient massive array with greatly reduced bill-of-materials (BOM).
Citation
Ce Zhang, Bingnan Wang, and Koon Hoo Teo, "Design of Continuous Beam Steerable and Scalable Unit Module for Wireless Power Transmission Using Injection-Locked Oscillator Array," Progress In Electromagnetics Research C, Vol. 69, 169-179, 2016.
doi:10.2528/PIERC16081805
References

1. Adler, R., "A study of locking phenomena in oscillators," Proceedings of the IRE, Vol. 34, No. 6, 351-357, 1946.
doi:10.1109/JRPROC.1946.229930

2. Birkeland, J. and T. Itoh, "A 16 element quasi-optical fet oscillator power combining array with external injection locking," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 3, 475-481, 1992.
doi:10.1109/22.121722

3. Chen, J.-X., K. W. Lau, K. Y. Chan, C. H. K. Chin, Q. Xue, and C. H. Chan, "A double-sided parallel-strip line push-pull oscillator," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 335-337, 2008.
doi:10.1109/LMWC.2008.922124

4. Choi, J., M. Nick, and A. Mortazawi, "Low phase-noise planar oscillators employing ellipticresponse bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 1959-1965, 2009.
doi:10.1109/TMTT.2009.2025424

5. Daryoush, A. S., "Optical synchronization of millimeter-wave oscillators for distributed architecture," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 5, 467-476, 1990.
doi:10.1109/22.54913

6. Khanna, A. P. S., "Microwave oscillators: the state of the technology," Microwave Journal, Vol. 49, No. 4, 22, 2006.

7. Leeson, D. B., "A simple model of feedback oscillator noise spectrum," Proceedings of the IEEE, 329-330, 1966.
doi:10.1109/PROC.1966.4682

8. Massa, A., G. Oliveri, F. Viani, and P. Rocca, "Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions," Proceedings of The IEEE, Vol. 101, No. 6, 1464-1480, 2013.
doi:10.1109/JPROC.2013.2245491

9. McSpadden, J. O. and J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology," Microwave Magazine, IEEE, Vol. 3, No. 4, 46-57, 2002.
doi:10.1109/MMW.2002.1145675

10. Oida, A., H. Nakashima, J. Miyasaka, K. Ohdoi, H. Matsumoto, and N. Shinohara, "Development of a new type of electric off-road vehicle powered by microwaves transmitted through air," Journal of Terramechanics, Vol. 44, No. 5, 329-338, 2007.
doi:10.1016/j.jterra.2007.10.002

11. Tseng, C.-H. and C.-L. Chang, "Design of low phase-noise microwave oscillator and wideband vco based on microstrip combline bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3151-3160, 2012.
doi:10.1109/TMTT.2012.2210441

12. York, R., T. Itoh, et al. "Injection-and phase-locking techniques for beam control [antenna arrays]," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, 1920-1929, 1998.
doi:10.1109/22.734513