Vol. 66
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-14
High Efficiency and High Power Staggered Double Vane TWT Amplifier Enhanced by Velocity-Taper Design
By
Progress In Electromagnetics Research C, Vol. 66, 39-46, 2016
Abstract
Previously reported staggered double vane (SDV) slow wave structure (SWS) traveling wave tube (TWT) gave electron efficiency as low as 3.4% at 220 GHz, which needs to be improved. One easy method to improve the electron efficiency and the output power is to reuse the spent electron beam energy, by resynchronizing electron velocity to the phase velocity of the terahertz (THz) signal at the second section of the TWT. In this article, we have modified the pitch of the SWS to realize the tapered phase velocity, which is for the first time to our knowledge applied to the SDV SWS at 220 GHz. By varying the geometry configuration, an optimized structure of tapered pitch SWS has been successfully developed. The results reported in this paper show a significant improvement of the output power, gain and electron efficiency. At 220 GHz, the output power has increased by about 65% with respect to the previous reported value reaching 111 W, and the electron efficiency has improved from 3.4% to 5.6%. In order to simplify the microfabrication process, an input/output coupler with E-plane bending has been designed, which can be fabricated by using only one mask UV-LIGA process.
Citation
Xianbao Shi, Laxma Reddy Billa, Yu-Bin Gong, Muhammad Nadeem Akram, and Xuyuan Chen, "High Efficiency and High Power Staggered Double Vane TWT Amplifier Enhanced by Velocity-Taper Design," Progress In Electromagnetics Research C, Vol. 66, 39-46, 2016.
doi:10.2528/PIERC16050305
References

1. Booske, J. H., "Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation," Phys. Plasmas, Vol. 15, No. 5, 055 502-1-055 502-16, May 2008.
doi:10.1063/1.2838240

2. Borsuk, G. M. and B. Levush, "Vacuum electronics research perspective at the naval research laboratory," IEEE Int. Vacuum Electron. Conf., 3, Monterey, USA, May 21–24, 2010.

3. Tucek, J., M. Basten, D. Gallagher, and K. Kreischer, "Sub-millimeter and THz power amplifier development at Northrop Grumman," IEEE Int. Vacuum Electron. Conf., 19, Monterey, USA, May 21–24, 2010.

4. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 910-928, 2002.
doi:10.1109/22.989974

5. Shin, Y. M., A. Baig, L. R. Barnett, W. C. Tsai, and N. C. Luhmann, "System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier," IEEE Transactions on Electron Devices, Vol. 59, No. 1, 234-240, 2012.
doi:10.1109/TED.2011.2173575

6. Shin, Y. M., A. Baig, L. R. Barnett, N. C. Luhmann, J. Pasour, and P. Larsen, "Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit," IEEE Transactions on Electron Devices, Vol. 58, No. 9, 3213-3218, 2011.
doi:10.1109/TED.2011.2159842

7. Xu, X., Y. Wei, F. Shen, Z. Duan, Y. Gong, H. Yin, and W. Wang, "Sine waveguide for 0.22-THz traveling-wave tube," IEEE Electron Device Letters, Vol. 32, 1152, 2011.
doi:10.1109/LED.2011.2158060

8. Booske, J. H., R. J. Dobbs, C. D. Joye, et al. "Vacuum electronic high power terahertz sources," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 54-75, 2011.
doi:10.1109/TTHZ.2011.2151610

9. Booske, J. H., B. D. Mcveya, and T. M. Antonsen, "Stability and confinement of nonrelativistic with periodic cusped magnetic focusing," J. Appl. Phys., Vol. 73, No. 9, 4140-4155, 1993.
doi:10.1063/1.352847

10. Shin, Y. M., L. R. Barnett, and N. C. Luhmann, "Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Transactions on Electron Devices, Vol. 56, No. 5, 706-712, 2009.
doi:10.1109/TED.2009.2015404

11. Shin, Y. M., A. Baig, L. R. Barnett, N. C. Luhmann, J. Pasour, and P. Larsen, "Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit," IEEE Transactions on Electron Devices, Vol. 58, No. 9, 3213-3218, 2011.
doi:10.1109/TED.2011.2159842

12. Shin, Y. M., A. Baig, L. R. Barnett, W. C. Tsai, and N. C. Luhmann, "System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier," IEEE Transactions on Electron Devices, Vol. 59, No. 1, 234-240, 2012.
doi:10.1109/TED.2011.2173575

13. Shi, X., Z. Wang, X. Tang, T. Tang, H. Gong, Q. Zhou, W. Bo, Y. Zhang, Z. Duan, Y. Wei, Y. Gong, and J. Feng, "Study on wideband sheet beam traveling wave tube based on staggered double vane slow wave structure," IEEE Trans. Plasma Sci., Vol. 42, No. 12, 3996-4003, 2014.
doi:10.1109/TPS.2014.2365582

14. Ghosh, T. K., A. J. Challis, A. Jacob, and D. Bowler, "Design of helix pitch profile for broadband traveling-wave tubes," IEEE Transactions on Electron Devices, Vol. 56, No. 5, 1135-1140, 2009.
doi:10.1109/TED.2009.2015137

15. Bo, W., Q. Zhou, Y. Zhang, and X. Shi, "Research on 0.22THz folded-waveguide traveling-wave tube with a proper phase-velocity taper," IEEE International Vacuum Electronics Conference, 4-5, 2015.

16. Gong, Y., H. Yin, L. Yue, Z. Lu, Y. Wei, J. Feng, Z. Duan, and X. Xu, "A 140-GHz two-beam overmoded folded-waveguide traveling-wave tube," IEEE Transactions on Electron Devices, Vol. 39, 847, 2011.

17. Nguyen, K., L. Ludeking, J. P. D. Pershing, E. Wright, D. K. Abe, and B. Levush, "Design of terahertz Extended Interaction Klystrons," IEEE Int. Vacuum Electron. Conf., 23, Monterey, USA, May 21–24, 2010.