Vol. 63
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-04-13
Enhancing Power Efficiency of Doherty Power Amplifiers Using Windowing Based Crest Factor Reduction Technique
By
Progress In Electromagnetics Research C, Vol. 63, 63-74, 2016
Abstract
This paper investigates the performance of a Windowing Based Crest Factor Reduction (CFRWB) technique, to enhance the power efficiency of Radio Frequency (RF) power amplifiers. In particular, CFRWB is implemented on a Doherty Power Amplifier (DPA) in conjunction with Generalized Memory Polynomial (GMPDPD), and Volterra series based Digital Predistortion (VDPD) techniques. Key features like spectral regrowth, Peak to Average Power Ratio (PAPR) reduction, efficiency improvement and Error Vector Magnitude (EVM) have been used to measure the efficacy of the proposed method. Both simulation and experimental results show that the proposed combination of CFRWB technique with GMPDPD and VDPD is able to reduce the PAPR of the complex input signals by nearly 60%, with minimal degrading of the EVM and spectral regrowth. Moreover, such signal with reduced PAPR can be used to overdrive the DPA, allowing for a relevant average efficiency enhancement (i.e., up to 25%), while fulfilling the requirements of modern communication standards such as Wideband Code Division Multiple Access (WCDMA) and long-term evolution (LTE).
Citation
Deepak Nair Maroor Vikraman, Rocco Giofre, and Paolo Colantonio, "Enhancing Power Efficiency of Doherty Power Amplifiers Using Windowing Based Crest Factor Reduction Technique," Progress In Electromagnetics Research C, Vol. 63, 63-74, 2016.
doi:10.2528/PIERC16021702
References

1. Shanzhi, C. and J. Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," Communications Magazine, IEEE, Vol. 52, No. 5, 36-43, 2014.
doi:10.1109/MCOM.2014.6815891

2. Paterson, K. G. and V. Tarokh, "On the existence and construction of good codes with low peak- to-average-power ratios," IEEE Trans. In-form. Theory, Vol. 46, No. 6, 1974-1987, Sep. 2000.
doi:10.1109/18.868473

3. Breiling, H., S. H. Muller-Weinfurtner, and J. B. Huber, "SLM peak-power reduction without explicit side information," IEEE Communication Letter, Vol. 5, No. 6, 239-241, Jun. 2001.
doi:10.1109/4234.929598

4. Armstrong, J., "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain ltering," Electron. Letter, Vol. 38, No. 5, 246-247, Feb. 2002.
doi:10.1049/el:20020175

5. Vaananen, O., J. Vankka, and K. Halonen, "Effect of clipping in wideband CDMA system and simple algorithm for peak windowing," Proc. World Wireless Congress, 614-619, San Francisco, CA, May 2002.

6. Sperlich, R., Y. Park, G. Copeland, and J. S. Kenney, "Power ampli er linearization with digital pre-distortion and crest factor reduction," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 669-672, Jun. 2004.

7. Giofre, R., L. Piazzon, P. Colantonio, F. Giannini, V. Camarchia, I. Mustazar, M. Pirola, R. Quaglia, and C. Ramella, "GaN MMICs for microwave backhaul: Doherty vs. combined class- AB power ampli er," 10th European Microwave Integrated Circuits Conference (EuMIC), 33-36, 7-8 Sept. 2015.

8. Lashkarian, N., H. Tarn, and C. Dick, "Crest factor reduction in multi-carrier WCDMA transmitters," IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 321-325, 2005.

9. Deepak Nair, M. V., R. Giofre, P. Colantonio, and F. Giannini, "Sequential asymmetric superposition windowing for crest factor reduction and its effects on Doherty power ampli er," Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Oct. 2015.

10. Deepak Nair, M. V., R. Giofre, L. Piazzon, P. Colantonio, and F. M. Ghannouchi, "Effects of windowing based crest factor reduction technique on digitally predistorted PAs for multicarrier WCDMA," Wireless Symposium (IWS), Mar. 2015.

11. Jiang, W., B. Xing, J. Wang, Y. Ni, C. Peng, X. Zhu, and W. Hong, "Performance improvement of power ampli ers with digital linearization technology," Proceedings of Asia-Paci c Microwave Conference, 1-4, Dec. 2007.

12. Zeng, Z., D. Xie, and Y. Huang, "A crest factor reduction method in digital predistortion for improvement of power efficiency," International Conference on Computer Science and Electronics Engineering, 636-639, Mar. 2012.

13. Mbaye, A., G. Baudoin, A. Gouba, Y. Louet, and M. Villegas, "Combining crest factor reduction and digital predistortion with automatic determination of the necessary crest factor reduction gain," European Microwave Conference (EuMC), 837-840, Oct. 2014.

14. Amiri, M. V., M. Helaoui, N. Boulejfen, and F. M. Ghannouchi, "Optimized spectrum constrained crest factor reduction technique using polynomials," IEEE Transactions on Communications, Vol. 63, No. 7, 2555-2564, Jul. 2015.
doi:10.1109/TCOMM.2015.2429575

15. Amiri, M. V., S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, "Partitioned distortion mitigation in LTE radio uplink to enhance transmitter efficiency," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 8, 2661-2671, Aug. 2015.
doi:10.1109/TMTT.2015.2447512

16. Helaoui, M., S. Boumaiza, A. Ghazel, and F. M. Ghannouchi, "Power and efficiency enhancement of 3G multicarrier ampli ers using digital signal processing with experimental validation," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1396-1404, Jun. 2006.
doi:10.1109/TMTT.2006.871238

17. Farabegoli, A., B. Sogl, J. E. Mueller, and R. Weigel, "Advanced transmitters with combined crest factor reduction and digital predistortion techniques," IEEE Radio and Wireless Symposium, 133-135, Jan. 2014.

18. Chen, G., R. Ansari, and Y. Yao, "Improved peak windowing for PAPR reduction in OFDM," IEEE 69th Vehicular Technology Conference, 2009, 1-5, Apr. 2009.

19. Nader, C., P. N. Landin, W. V. Moer, and N. Bjorsell, "Peak-power controlling technique for enhancing digital pre-distortion of RF power ampli ers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3571-3581, Sep. 2012.
doi:10.1109/TMTT.2012.2213836

20. Roy, T. K. and M. Morshed, "Performance analysis of low pass FIR lters design using Kaiser, Gaussian and Tukey window function methods," International Conference on Advances in Electrical Engineering, 1-6, Dec. 2013.

21. Younes, M. and F. M. Ghannouchi, "Behavioral modeling of concurrent dual-band transmitters based on radially-pruned Volterra model," IEEE Communications Letters, Vol. 19, No. 5, 751-754, May 2015.
doi:10.1109/LCOMM.2015.2404442

22. Morgan, D. R., M. Zhengxiang, K. Jaehyeong, and M. G. Zierdt, "A generalized memory polynomial model for digital predistortion of RF power ampli ers," IEEE Transactions on Signal Processing, 3852-3860, Oct. 2006.

23. Tehrani, A. S., C. Haiying, S. Afsardoost, T. Eriksson, M. Isaksson, and C. Fager, "A comparative analysis of the complexity/accuracy tradeoff in power ampli er behavioral models," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 6, 1510-1520, May 2010.
doi:10.1109/TMTT.2010.2047920

24. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "A closed-form design technique for ultra- wideband Doherty power ampli ers," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3414-3424, Dec. 2014.
doi:10.1109/TMTT.2014.2363851

25. 3GPP "Base Station (BS) radio transmission and reception (FDD)," TS 25.104, V. 9.1.0, (Release 9), 2009.