Vol. 59
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-11-17
Design and Performance of a W-Band MMW/IR Compound Cassegrain Antenna System with a Hyperbolic Sub-Reflector Based on Frequency Selective Surface
By
Progress In Electromagnetics Research C, Vol. 59, 167-174, 2015
Abstract
A MMW/IR compound Cassegrain antenna system for mono-pulse radar applications is presented in this paper. By comparing different modeling methods of conformal frequency selective surface (CFSS), a sub-reflector, with a good performance of reflection at 93 GHz and transparency at the wavelength of 1.06 μm, is achieved according to sputtering technique. At the wavelength of 1.06 μm, transmittance of the sub-reflector is 67%. Compared to a Cassegrain antenna system consisting of a metallic sub-reflector with identical size, the gain of the compound antenna system has a negligible loss (less than 0.4 dB) at 93 GHz. Compared with the patent in [13], the design can improve the limited size of receiving system and the utilization of aperture of the compound detection system at IR region, and can also enhance the heat dissipation.
Citation
Min Han, Guo-Qiang Zhao, Mang He, Pei Zheng, Zhang-Feng Li, Cheng Jin, and Hou-Jun Sun, "Design and Performance of a W-Band MMW/IR Compound Cassegrain Antenna System with a Hyperbolic Sub-Reflector Based on Frequency Selective Surface," Progress In Electromagnetics Research C, Vol. 59, 167-174, 2015.
doi:10.2528/PIERC15083003
References

1. Klein, L. A., Millimeter Wave and Infrared Multisensor Design and Signal Processing, 1-47, Artech House, Boston, 1997.

2. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," John Wiley Interscience, 1-21, 2000.

3. Hang, Z., S. Qu, B. Lin, et al. "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 60, No. 6, 3040-3045, 2012.
doi:10.1109/TAP.2012.2194648

4. Chen, H., X. Hou, and L. Deng, "Design of frequency-selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1231-1233, 2009.
doi:10.1109/LAWP.2009.2035646

5. Gustafsson, M., "RCS reduction of integrated antenna arrays and radomes with resistive sheets," IEEE Antennas and Propagation Society International Symposium, 3479-3482, Albuquerque NM, 2006.

6. Bresciani, D., S. Contu, C. Bruno, et al. "Design of a 1m dichroic subreflector for K and Ku frequency bands," IEEE Antennas and Propagation Society International Symposium, 1084-1087, San Jose, CA, USA, 1989.

7. Lima, A. D. C. and E. Parker, "Fabry-Perot approach to the design of double layer FSS," IEE Proceedings-Microwaves Antennas and Propagation, Vol. 143, No. 2, 157-162, 1996.
doi:10.1049/ip-map:19960236

8. Kiani, G. I., K. L. Ford, K. P. Esselle, et al. "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980

9. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2740-2747, 2012.
doi:10.1109/TAP.2012.2194640

10. Euler, M., V. Fusco, R. Cahill, et al. "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2457-2459, 2010.
doi:10.1109/TAP.2010.2048874

11. Agrawal, V. D., "Design of a dichroic Cassegrain subreflector," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 4, 466-473, 1979.
doi:10.1109/TAP.1979.1142119

12. Zhang, C., X.-L. Liu, Q. Yang, et al. "Research of airborne radomes curved FSS array graphics," Production Technology Branch of China Electronic Institute Electricity Processing Professional Committee of the Sixth Academic Essays, 224-227, 2000.

13. Sanders, R. J., J. D. Shmoldas, and D. A. Wicks, "Dual-frequency millimeter wave and laser radiation receiver,", US, 6268822.2001-07-03, http://www.freepatentsonline.com/6268822.pdf.

14. Hou, X.-Y., P. Zhang, and J. Lu, "A novel frequency selective design for double curved radome," Journal of Projectiles, Rockets, Missiles and Guidance, Vol. 26, 123-125, 2006.

15. Cui, X., "Analysis and simulation of the bandpass radome application based on FSS,", Master Dissertation in Northwestern Polytechnical University, 2006.

16. Bhattacharyya, A. K., High-frequency Techniques: Recent Advance and Applications, 261, John Wiley Interscience, New York, USA, 1995.