Vol. 56
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-02-16
A Thin and Broadband Microwave Absorber Based on Magnetic Sheets and Resistive FSS
By
Progress In Electromagnetics Research C, Vol. 56, 93-100, 2015
Abstract
To achieve broadband microwave absorption, a three-layer structure is designed and manufactured. It involves a resistive frequency selective surface (FSS) sandwiched between two layers of magnetic sheets. The measurement results reveal that this structure exhibits -13 dB reflectivity in the frequency range of 7.9-18 GHz while the thickness is only 1.7 mm. The reflectivity bandwidth at the level of -10 dB is 11.4 GHz which is much wider than that of magnetic sheets with non-resistive FSS or the magnetic sheets without FSS. The effect of resistive FSS on the performance of the multilayered absorber is discussed in detail. It is concluded that an embedded resistive double loops FSS can result in a secondary resonance peak which obviously broadens the reflectivity bandwidth of the magnetic sheets.
Citation
Dong Wan, Shaowei Bie, Jie Zhou, Haibing Xu, Yongshun Xu, and Jianjun Jiang, "A Thin and Broadband Microwave Absorber Based on Magnetic Sheets and Resistive FSS," Progress In Electromagnetics Research C, Vol. 56, 93-100, 2015.
doi:10.2528/PIERC14122203
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Edition, Section 8, 314, SciTech, Raleigh, NC, 2004.

2. Yao, J., S. Bie, C. Zhang, and X. Chen, "Optimized design of the wave-absorbing coating made of carbonyl iron powders," Electronic Components and Materials, Vol. 31, 597-600, Jan. 2012.

3. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, "An ultrathin and broadband metamaterial absorber using multi-layer structures," Journal of Applied Physics, Vol. 114, 064109-1-064109-6, Aug. 2013.

4. Babayan, V. A., Y. N. Kazantsev, A. V. Lopatin, V. P. Mal’tsev, and N. E. Kazantseva, "Extension of the operating frequency range of a dielectric radio absorber with the help of frequency selective surfaces," Journal of Communications Technology and Electronics, Vol. 56, 1357-1362, May 2011.
doi:10.1134/S1064226911110040

5. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1230-1234, Aug. 2000.
doi:10.1109/8.884491

6. Feng, Y. B., T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," Journal of Magnetism and Magnetic Materials, Vol. 318, 8-13, Nov. 2007.
doi:10.1016/j.jmmm.2007.04.012

7. Zhang, W., S. Bie, H. Chen, Y. Lu, and J. Jiang, "Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite," Journal of Magnetism and Magnetic Materials, Vol. 323, 1805-1810, Apr. 2014.

8. Zhang, B., Y. Feng, J. Xiong, Y. Yang, and H. Lu, "Microwave absorbing properties of deaggregated flake-shaped carbonyl-iron particle composites at 2–18 GHz," IEEE Transactions on Magnetics, Vol. 42, 1778-1781, Jul. 2006.
doi:10.1109/TMAG.2006.874188

9. Da Silva Macedo, J. A., M. J. de Sousa, and V. Dmitriev, "Optimization of wide-band multilayer microwave absorbers for any angle of incidence and arbitrary polarization," 2005 SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, 558-561, Jul. 2005.

10. Chen, H.-Y., H.-B. Zhang, and L.-J. Deng, "Design of an ultra-thin magnetic-type radar absorber embedded with FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 899-901, Sep. 2010.
doi:10.1109/LAWP.2010.2076344

11. Sha, Y., K. A. Jose, C. P. Neo, and V. K. Varadan, "Experimental investigations of microwave absorber with FSS embedded in carbon fiber composite," Microwave and Optical Technology Letters, Vol. 32, 245-249, Feb. 2002.
doi:10.1002/mop.10144

12. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, Feb. 2012.
doi:10.2528/PIERB11121601

13. Zhang, C., "Investigation of microwave absorption and conduction noise suppression properties for flake-shaped alloy magnetic powders,", Doctor Thesis, Huazhong University of Science and Technology, May 2012.

14. Cheng, Y.-Z. and X. Wang, "A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors," Chin. Phys. B, Vol. 21, 127801-1-127801-5, Aug. 2012.