Vol. 46
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-01-09
Complementary Spiral Resonators for Ultrawideband Suppression of Simultaneous Switching Noise in High-Speed Circuits
By
Progress In Electromagnetics Research C, Vol. 46, 117-124, 2014
Abstract
In this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN) mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span ranging from 340 MHz to beyond 10 GHz. By placing a slit in the co-centric rings, lower cut-off frequency is reduced to 150 MHz, keeping the rest of the structure unaltered. Finally, the power plane structure with modified complementary spiral resonators (MCSRs) is designed, fabricated, and evaluated experimentally. Measurement and simulation results are in well-agreement.
Citation
Amir Ghobadi, Kagan Topalli, Necmi Biyikli, and Ali Kemal Okyay, "Complementary Spiral Resonators for Ultrawideband Suppression of Simultaneous Switching Noise in High-Speed Circuits," Progress In Electromagnetics Research C, Vol. 46, 117-124, 2014.
doi:10.2528/PIERC13120208
References

1. Ren, K., C. Y. Wu, and L. C. Zhang, "The restriction on delta-I noise along the power/ground layer in the high speed digital printed circuit board," Proc. IEEE Int. Electromagn. Compat. Symp., 511-516, Aug. 1998.

2. Kamgaing, , T. and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw., Wireless Component Lett., Vol. 13, No. 1, 21-23, 2003.
doi:10.1109/LMWC.2002.807713

3. Wu, T. L., S. T. Chen, J. N. Hwang, and Y. H. Lin, "Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB," IEEE Trans. on Electromagn. Compat., Vol. 46, No. 1, 33-45, 2004.
doi:10.1109/TEMC.2004.823680

4. Swaminathan, M., "Power distribution networks for system-on-package: Status and challenges," IEEE Trans. on Advanced Packaging, Vol. 27, No. 2, 286-230, 2004.
doi:10.1109/TADVP.2004.831897

5. Lei, G. T., R. W. Techentin, and B. K. Gilbert, "High frequency characterization of power/ground-plane structures ," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 5, 562-569, 1999.
doi:10.1109/22.763156

6. Ramahi, O., V. Subramanian, and B. Archambeault, "A simple finite difference frequency-domain (FDFD) algorithm for analysis of switching noise in printed circuit boards and packages," IEEE Trans. on Advanced Packaging, Vol. 26, No. 2, 191-198, 2003.
doi:10.1109/TADVP.2003.817477

7. Archambeault, B., "Analyzing power/ground plane decoupling performance using the partial element equivalent circuit (PEEC) simulation technique," IEEE Int. Electromagn. Compat. Symp., 779-784, Aug. 2000.

8. Archambeault, B. and A. E. Ruehli, "Analysis of power/ground plane EMI decoupling performance using the partial-element equivalent circuit technique," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 4, 437-445, 2001.
doi:10.1109/15.974623

9. Madou, A. and L. Martens, "Electrical behavior of decoupling capacitors embedded in multilayered PCBs," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 4, 549-556, 2001.
doi:10.1109/15.974634

10. Xu, M., T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, "Power-bus decoupling with embedded capacitance in printed circuit board design," IEEE Trans. on Electromagn. Compat., Vol. 45, No. 1, 22-30, 2003.
doi:10.1109/TEMC.2002.808075

11. Shahparnia, S. and O. Ramahi, "Miniaturised electromagnetic bandgap structures for broadband switching noise suppression in PCBs," Electron. Lett., Vol. 41, No. 9, 519-520, 2005.
doi:10.1049/el:20050445

12. Kwon, J. H. and J. G. Yook, "Partial placement of EBG on both power and ground planes for broadband suppression of simultaneous switching noise ," IEICE Trans. on Commun., Vol. E92-B, No. 7, 2550-2553, 2009.
doi:10.1587/transcom.E92.B.2550

13. Shahparnia, S. and O. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Trans. on Electromagn. Compat., Vol. 46, No. 4, 580-587, 2004.
doi:10.1109/TEMC.2004.837671

14. Kamgaing, T. and O. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wirel. Compon. Lett., Vol. 13, No. 1, 21-23, 2003.
doi:10.1109/LMWC.2002.807713

15. Chang, C. S., M. P. Houng, D. B. Lin, K. C. Hung, and I. T. Tang, "Simultaneous switching noise mitigation capability with low parasitic e®ect using aperiodic high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 4, 149-158, 2008.
doi:10.2528/PIERL08082902

16. Chang, C. S., J. Y. Li, W. J. Lin, M. P. Houng, L. S. Chen, and D. B. Lin, "Controlling the frequency of simultaneous switching noise suppression by using embedded dielectric resonators in high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009.
doi:10.2528/PIERL09082406

17. Bait-suwailam, M. M. and O. M. Ramahi, "Simultaneous switching noise mitigation in high-speed circuits using complementary split ring resonators," IET Electron. Lett., Vol. 46, 563-564, 2010.
doi:10.1049/el.2010.0583

18. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Condens. Matter, Vol. 69, 14402, 2004.
doi:10.1103/PhysRevB.69.014402

19. Baena, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines ," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

20. Marques, , R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and roadside-coupled split ring resonators for metamaterial design. Theory and experiments," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 1, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

21. Isik, O. and K. P. Esselle, "Backward wave microstrip lines with complementary spiral resonators," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 10, 2008.
doi:10.1109/TAP.2008.929441

22. Falcone, F., T. Lopetegi, J. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029