Vol. 34
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-10-31
A Metamaterial Based Microwave Absorber Composed of Coplanar Electric-Field-Coupled Resonator and Wire Array
By
Progress In Electromagnetics Research C, Vol. 34, 111-121, 2013
Abstract
In this paper, we present a new type of a double-negative metamaterial absorber (MMA) with a periodic array composed of in-plane an electric-field-coupled-LC (ELC) resonator and a wire. In contrast to common MMA configurations, a metallic pattern layer of the proposed absorber is placed parallel to the incident wave propagation direction. An appropriately designed combination structure is etched on one side of an FR-4 substrate. Here, we fabricated a prototype absorber with a planar array of 66 × 30 unit cells. Our experiments showed that the proposed absorber exhibited a peak absorption rate greater than 86% at 10.1 GHz, irrespective of the incident angles up to 60°.
Citation
Hong-Min Lee, and Hyungsup Lee, "A Metamaterial Based Microwave Absorber Composed of Coplanar Electric-Field-Coupled Resonator and Wire Array," Progress In Electromagnetics Research C, Vol. 34, 111-121, 2013.
doi:10.2528/PIERC12091804
References

1. Fnate, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. on Antennas and Propag., Vol. 36, 1443-1445, 1988.
doi:10.1109/8.8632

2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., 274021-274024, 2008.

3. Tao, H., N. I. Landy, C. M. Bingham, X. Zang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181

4. Alici, K. B., A. B. Turhan, C. M. Soukoulis, and E. Ozbay, "Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration," Opt. Express, Vol. 19, No. 15, 14260-14267, 2011.
doi:10.1364/OE.19.014260

5. Jang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating ," ACS Nano, Vol. 5, No. 6, 4641-4647, 2011.
doi:10.1021/nn2004603

6. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, No. 7, 2342-2348, 2010.
doi:10.1021/nl9041033

7. Chiam, S. Y., R. Singh, W. Zhang, and A. A. Bettiol, "Controlling metamaterial resonances via dielectric and aspect ratio effects," Appl. Phys. Lett., Vol. 97, 1919061-1919063, 2010.

8. Singh, R., I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, "Observing metamaterial induced transparency in individual Fano resonators with broken symmetry," Appl. Phys. Lett., Vol. 99, 2011071-2011073, 2011.
doi:10.1063/1.3656711

9. Cao, W., R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett., Vol. 37, 3366-3368, 2012.
doi:10.1364/OL.37.003366

10. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys. D, Vol. 43, 225102-225106, 2010.
doi:10.1088/0022-3727/43/22/225102

11. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

12. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-nsensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770

13. Cheng, Y., H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," J. Appl. Phys. A, Vol. 102, 99-103, 2010.

14. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

15. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegini, "Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions," IEEE Trans. on Electromagnetic Compatibility, Vol. 53, 63-72, 2011.
doi:10.1109/TEMC.2010.2051229

16. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Microwave Opt. Tech. Lett., Vol. 52, 877-880, 2010.
doi:10.1002/mop.25068

17. Tao, H., C. M Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. of Phys. D: Appl. Phys., Vol. 43, 225102-225106, 2010.
doi:10.1088/0022-3727/43/22/225102

18. Shen, X., T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 9401-9407, 2011.
doi:10.1364/OE.19.009401

19. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 0149091-0149098, 2011.

20. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

21. Padilla, W. J., M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B, Vol. 75, 0411021-0411024, 2007.

22. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain technique," IEEE Trans. on Instrumentation and Measurement, Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

23. Depine, R. A. and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Tech. Lett., Vol. 41, 315-316, 2004.
doi:10.1002/mop.20127