Vol. 21
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-04-19
Design and Implementation of an X-Band Pulsed Solid-State Power Amplifier with High Power and High Efficiency Using Radial Waveguide Combiner
By
Progress In Electromagnetics Research C, Vol. 21, 113-127, 2011
Abstract
An X-band active radial-waveguide pulsed power amplifier (PA) with high power and high power added efficiency (PAE) is designed, fabricated, and measured in this paper. A bandwidth of 1000 MHz with peak power level of 53.2 dBm at the frequency 9.85 GHz, under the condition of 4 KHz pulse repeat frequency (PRF) and 10% of duty cycle, has been obtained by five-way radial waveguide power combiner. Key features of this combined device are its maximum PAE (>43.6%) and combining efficiency (>92.8%). From 9.5 to 10.5 GHz, the pulsed solid-state power amplifier (PSSPA) can provide a minimum output power level 51.4 dBm, which operates on the repeat frequency 4 KHz, duty cycle 10%. The gain varied between 41.4 and 43.1 dB at the desired frequency range, with only less than ±0.9-dB gain variation, which displayed a flat gain ripple. The PAE of the active combiner fluctuated between 36.5% and 43.6% as frequency varied from 9.5 to 10.5 GHz.
Citation
Hui Chen, Xin-Feng Ji, Lu-Jun Jiang, and Yu-Xing Zhang, "Design and Implementation of an X-Band Pulsed Solid-State Power Amplifier with High Power and High Efficiency Using Radial Waveguide Combiner," Progress In Electromagnetics Research C, Vol. 21, 113-127, 2011.
doi:10.2528/PIERC11030501
References

1. Gregers-Hansen, V., "Radar systems trade-offs, vacuum electronics vs. solid-state," Proc. 5th IEEE Inter. Conf. Vacuum Electronics, 12-13, Apr. 2004.

2. Giacomo, M. D., "Solid-state RF amplifiers for accelerator applications," Proc. Particle Accelerator Conf., May 2009.

3. Symons, R. S., "Modern microwave power sources," IEEE AESS Systems Magazine, Vol. 17, 19-26, Jan. 2002.
doi:10.1109/62.978360

4. Koryu Ishii, T., Microwave Technology: Components and Devices, (Handbook Style), Academic Press Inc., 1995.

5. Schirmer, A., "Emission of parasitic X-rays from military radar transmitters and exposure of personnel: Towards a retrospective assessment," Proc. 2nd European IRPA Cong. Radiation Protection, Paris, May 2006.

6. Gouker, M. A., "Spatial power combining," Active and Quasi-optical Arrays for Solid-state Power Combining, R. A. York and Z. B. Popovic (eds.), Wiley, New York, 1997.

7. Cheng, N. S., T. P. Dao, M. G. Case, D. B. Rensch, and R. A. York, "A 120-wattX-band spatially combined solid state amplifier," IEEE Trans. Mircow. Theory Tech., Vol. 47, No. 12, 2557-2561, Dec. 1999.
doi:10.1109/22.809006

8. Bialkowski, M. E. and V. P. Waris, "Electromagnetic model of a planar radial-waveguide divider/combiner incorporating probes," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 6-7, 1126-1134, Jun. 1993.
doi:10.1109/22.238537

9. Schellenberg, J. and M. Cohn, "A wideband radial power combiner for FET amplifiers," IEEE ISSC Int. Dig., 164-165, 1978.

10. Song, K. J., Y. Fan, and Z. R. He, "Broadband radial waveguide spatial combiner," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 2, 73-75, Feb. 2008.
doi:10.1109/LMWC.2007.911984

11. Gilmore, R. and L. Besser, Practical RF Circuit Design for Modern Wireless Systems (Volume II), Artech House, Norwood, MA, 2003.

12. Sayre, C. W., Complete Wireless Design, 2nd Ed., McGraw-Hill, 2008.

13. Lacombe, D. and J. Cohen, "Octave-band microstrip DC blocks," IEEE Trans. Microwave Technology Tech., Vol. 20, 555-556, Aug. 1972.
doi:10.1109/TMTT.1972.1127808

14. Ho, C. Y., "Analysis of DC blocks using coupled lines," IEEE Trans. Microwave Technology Tech., Vol. 23, 773-774, Sep. 1975.
doi:10.1109/TMTT.1975.1128675

15. Kajfez, D. and B. S. Vidula, "Design equations for symmetric microstrip DC blocks," IEEE Trans. Microwave Technology Tech., Vol. 28, 974-981, Sep. 1980.
doi:10.1109/TMTT.1980.1130205

16. Dixon, P., "Dampening cavity resonance using absorber material," RF Design Magazine, 16-19, May 2004.

17. Syrett, B. A., "A broadband element for microstrip bias or tuning circuits," IEEE Trans. MTT, Vol. 28, No. 8, 488-491, Aug. 1980.
doi:10.1109/TMTT.1980.1130193

18. Basset, R., High power GaAs FET device bias considerations, Fujitsu Compound Semiconductor, Inc., Application Note, No. 010, http://www.fcsi.fujitsu.com/.

19. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, T.-G. Lim, Y.- Q. Zhuang, and L.-W. Li, "A D-band power amplifier with 30-GHz bandwidth and 4.5-dBm psat for high-speed communication system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806

20. Mandeep, J. S., A. Lokesh, S. I. S. Hassan, M. N. Mahmud, and M. F. Ain, "Design of cartesian feedback RF power amplifier for L-band frequency range," Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008.
doi:10.2528/PIERB07111901

21. Jiménez-Martín, J. L., V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J. Arques-Orobon, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Dual band high efficiency class CE power amplifier based on CRLH diplexer," Progress In Electromagnetics Research, Vol. 97, 217-240, 2009.
doi:10.2528/PIER09071609

22. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2537-2545, 2010.
doi:10.1163/156939310793675619

23. Bialkowski, M. E. and V. P. Waristt, "A systematic approach to the design of radial-waveguide dividers/combiners," Asia-pacific Microwave Conference, 881-884, 1992.

24. Fathy, A. E., S.-W. Lee, and D. Kalokitis, "A simplified design approach for radial power combiners," IEEE Trans. on MTT, Vol. 54, No. 1, 247-255, Jan. 2006.
doi:10.1109/TMTT.2005.860302