Vol. 12
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-03-04
Performance-Driven Dimension Estimation of Memory Polynomial Behavioral Models for Wireless Transmitters and Power Amplifiers
By
Progress In Electromagnetics Research C, Vol. 12, 173-189, 2010
Abstract
A novel approach is proposed for automated dimension estimation in memory polynomial based power amplifiers/transmitters behavioral models. This method consists of successively identifying the static nonlinearity order and memory depth of the model in accordance with a predefined performance criterion. The proposed method is validated using a 3G Doherty power amplifier driven by various WCDMA signals. Experimental results demonstrate the robustness of the proposed successive sweep approach compared to the conventional blind simultaneous sweep approach. The proposed dimension estimation method is an enabling tool for efficient design optimization of power amplifiers circuits to enhance their linearizability.
Citation
Oualid Hammi, Mayada Younes, Andrew Kwan, Michael R. Smith, and Fadhel M. Ghannouchi, "Performance-Driven Dimension Estimation of Memory Polynomial Behavioral Models for Wireless Transmitters and Power Amplifiers," Progress In Electromagnetics Research C, Vol. 12, 173-189, 2010.
doi:10.2528/PIERC10012611
References

1. Konstantinou, K., P. Gardner, and D. K. Paul, "Feedforward linearization of microwave amplifiers," 3rd European Conference on Satellite Communications, 394-398, Nov. 1993.

2. Konstantinou, K. and D. K. Paul, "Broadband feedforward linearization of microwave power amplifiers," IEE Colloquium on Solid State Power Amplification and Generation, 2/1-2/9, Jan. 1996.

3. Katz, A., "Linearization: reducing distortion in power amplifiers," IEEE Microw. Mag., Vol. 2, No. 4, 37-49, Dec. 2001.
doi:10.1109/6668.969934

4. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," IEE Electronic Letters, Vol. 37, No. 23, 1417-1418, Nov. 2001.
doi:10.1049/el:20010940

5. Raich, R., H. Qian, and G. T. Zhou, "Orthogonal polynomials for power amplifier modeling and predistorter design," IEEE Trans. Veh. Tech., Vol. 53, No. 5, 1468-1479.
doi:10.1109/TVT.2004.832415

6. Gilabert, P., G. Montoro, and E. Bertran, "On the Wiener and Hammerstein models for power amplifier predistortion," Microwave Conference Proceedings, APMC 2005, Asia-Pacific, Dec. 2005.

7. Liu, T., S. Boumaiza, and F. M. Ghannouchi, "Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1340-1349, Apr. 2000.

8. Morgan, D., Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers ," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, Oct. 2006.
doi:10.1109/TSP.2006.879264

9. Ding, Y. and A. Sano, "An adaptive predistortion for nonlinear amplifier in OFDM communication systems," IET International Conference on Wireless, Mobile and Multimedia Networks, 1-4, Nov. 2006.

10. Qian, Y., F. Liu, and Y. Huang, "A simplified predistortion linearization scheme for power amplifiers with memory," IET Conference on Wireless, Mobile and Sensor Networks, 869-872, Dec. 2007.

11. Ai, B., Z. D. Zhong, G. Zhu, R. T. Xu, and Z. Q. Li, "Two-dimensional indexing polynomial-based pre-distorter for power amplifiers with memory effects," IET Commun., Vol. 2, No. 10, 1263-1271, Nov. 2008.
doi:10.1049/iet-com:20080209

12. Zhu, A., J. Pedro, and T. Cunha, "Pruning the Volterra series for behavioral modeling of power amplifiers using physical knowledge," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 813-821, May 2007.
doi:10.1109/TMTT.2007.895155

13. Crespo-Cadenas, C., J. Reina-Tosina, and M. J. Madero-Ayora, "Volterra behavioral model for wideband RF amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 3, 449-457, Mar. 2007.
doi:10.1109/TMTT.2006.890514

14. Isaksson, M. and D. Ronnow, "A parameter-reduced Volterra model for dynamic RF power amplifier modeling based on orthonormal basis functions," Int. J. RF and Microwave Computer-Aided Eng., Vol. 17, No. 6, 348-359, Jan. 2006.

15. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Synergetic crest factor reduction and baseband digital predistor-tion for adaptive 3G Doherty power amplifier linearizer design," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2602-2608, Nov. 2008.
doi:10.1109/TMTT.2008.2004899

16. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Novel approach for static nonlinear behavior identification in RF power amplifiers exhibiting memory effects," 2008 IEEE MTT-S International Microwave Symposium (IMS'2008), 1521-1524, Atlanta, GA, USA, June 2008.

17. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Power amplifiers' model assessment and memory effects intensity quanti¯cation using memoryless post-compensation technique," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3170-3179, Dec. 2008.
doi:10.1109/TMTT.2008.2006809