Vol. 10
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-09-02
Loaded Coupled Transmission Line Approach of Left-Handed (LH) Structures and Realization of a Highly Compact Dual-Band Branch-Line Coupler
By
Progress In Electromagnetics Research C, Vol. 10, 75-86, 2009
Abstract
A novel approach of left-handed (LH) structures is introduced to reduce the size of microwave components by combining a loaded coupled transmission lines and complementary split ring resonators (CSRRs). The performance of the loaded part of the proposed model is equal by two cascaded unit elements. The equivalent circuit model and subsequently, the left and right handed transmission frequencies of the proposed structure are presented. A highly miniaturized dual-band branch-line coupler (BLC) is analyzed, designed, tested and proposed by this technique. The size reduction is reported about 75% in analogy with the conventional ones. The measurement results are in good agreement with the theoretical ones.
Citation
Mohsen Hayati, and Mehdi Nosrati, "Loaded Coupled Transmission Line Approach of Left-Handed (LH) Structures and Realization of a Highly Compact Dual-Band Branch-Line Coupler," Progress In Electromagnetics Research C, Vol. 10, 75-86, 2009.
doi:10.2528/PIERC09041508
References

1. Baena, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

3. Mondal, P., M. K. Mandal, A. Chaktabary, and S. Sanyal, "Compact bandpass filters with wide controllable fractional bandwidth," IEEE Microwave Wireless Comp. Lett., Vol. 16, 540-542, 2006.
doi:10.1109/LMWC.2006.882401

4. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.
doi:10.2528/PIER07111203

5. Zhang, J., B. Cui, S. Lin, and X.-W. Sun, "Sharp-rejection low-pass filter with controllable transmission zero using complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

6. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-materials," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, 195-198, 2003.

7. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission lines," IEEE AP-S Int. Symp. Dig., Vol. 2, 412-415, 2002.

8. Iyer, K. and G. V. Eleftheriades, "Negative refractive-index metamaterials supporting 2-D waves," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, 1067-1070, 2002.

9. Lin, I. H., M. D. Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, 1142-1149, Apr. 2004.
doi:10.1109/TMTT.2004.825747

10. Sanda, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave Wireless Comp. Lett., Vol. 14, 68-70, Feb. 2004.
doi:10.1109/LMWC.2003.822563

11. Niu, J.-X. and X.-L. Zhou, "A novel dual-band branch line coupler based on strip-shaped complementary split ring resonators," Microwave and Opt. Tech. Lett., Vol. 49, No. 11, 2859-2862, Nov. 2007.
doi:10.1002/mop.22873

12. Siso, G., J. Bonache, M. Gill, I. Gill, J. Garcia-Garcia, and F. Martin, "Compact rat-race hybrid based on complementary split rings resonators," PIERS Online, Vol. 3, No. 3, 2007.

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

14. Monti, G. and L. Tarricone, "Dual-band artificial transmission lines branch-line coupler," International Journal of RF and Microwave Computer-aided Eng., 53-62, Sept. 2007.

15. Nosrati, M. and S. K. Valashani, "A novel compact branch-line coupler using four coupled transmission lines," Microwave and Opt. Tech. Lett., Vol. 50, No. 6, 1712-1714, June 2008.
doi:10.1002/mop.23460

16. Nosrati, M. and A. Najafi, "Bandwidth enhancement and further size reduction of a class of elliptic-function low-pass filter using modified hairpin resonators," Progress In Electromagnetics Research C, Vol. 5, 187-194, 2008.

17. Chan, Y.-H. and J.-S. Hong, "Compact wide-band branch-line hybrids," IEEE Trans. Microwave Theory Tech., Vol. 54, 704-709, Apr. 2006.