Vol. 96
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-08-24
A Review on Metamaterial Application in Microstrip and Substrate Integrated Waveguide Antenna Designs
By
Progress In Electromagnetics Research B, Vol. 96, 87-132, 2022
Abstract
Metamaterials are artificially configured composite materials exhibiting unique characteristics such as negative effective permittivity and permeability. Due to these distinctive characteristics, metamaterials have drawn special attention in designing novel antenna structures and improving antenna performances. The application of metamaterial in antenna technology significantly brings miniaturization to the antenna structure, enhances the impedance bandwidth, gain, and efficiency of the antenna as well as improves isolation between the MIMO antenna elements. The substrate integrated waveguide (SIW) reduces the conductor and dielectric loss, and surface waεve excitations in the antennas. Although an overview of the performance enhancement of microstrip patch antennas under the influence of metamaterial has been incorporated in this article, the authors have put more effort in presenting a detailed study on working mechanism of metamaterial-based SIW antennas. Thus, a detailed review of the novel designs of metamaterial-inspired SIW cavity-backed slot antennas (CBSA), leaky-wave antennas (LWA), aperture antennas, and H-plane horn antennas has been included. The theoretical background of the metamaterials characteristics has been presented. Moreover, the working principles of metamaterial-based SIW CBSAs, SIW LWAs, SIW aperture antennas, and SIW H-plane horn antennas have been thoroughly outlined in obtaining antenna miniaturization, gain enhancement, beam steering through frequency scanning, polarization flexibility, bandwidth broadening, and isolation improvement. Besides this, a study has also been included in eliminating the limitations of SIW on-chip antennas such as narrow bandwidth, low gain, and efficiency by including metamaterial/metasurface in the antenna designs. Although the emphasis has been given to elaborating the attractive antenna performances, some design limitations have also been identified, and those need further investigation. This survey brings up not only the conceptual framework of the attractive characteristics of metamaterial, the design methodology of the non-resonant type metamaterial in the SIW environment, and the working principles of metamaterial-inspired SIW antennas but also the design limitations. Thus, consideration can be given to this article as the potential design guidelines of the metamaterial-based SIW antennas, and possible ideas can be obtained for doing further advanced research on the identified research gaps.
Citation
Wriddhi Bhowmik, Bhargav Appasani, Amit K. Jha, and Shweta Srivastava, "A Review on Metamaterial Application in Microstrip and Substrate Integrated Waveguide Antenna Designs," Progress In Electromagnetics Research B, Vol. 96, 87-132, 2022.
doi:10.2528/PIERB22052401
References

1. Jung, J., W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE Microwave and Wireless Component Letters, Vol. 15, 703-705, 2005.
doi:10.1109/LMWC.2005.856834

2. Tseng, C.-F., C.-L. Huang, and C.-H. Hsu, "Microstrip fed monopole antenna with a shorted parasitic element for wideband application," Progress In Electromagnetics Research Letters, Vol. 7, 115-125, 2009.
doi:10.2528/PIERL09021206

3. Luk, K. M. and S. H. Wong, "A printed high-gain monopole antenna for indoor wireless LANs," Microwave and Optical Technology Letters, Vol. 41, 177-180, 2004.
doi:10.1002/mop.20085

4. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 2, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

5. Cui, T. J., D. R. Smith, and R. Liu, Metamaterials: Theory, Design and Applications, Springer, 2009.

6. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179

7. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401

8. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

9. Panda, P. K. and D. Ghosh, "Isolation and gain enhancement of patch antennas using EMNZ superstrate," International Journal of Electronics and Communication (AEU), Vol. 86, 164-170, 2018.
doi:10.1016/j.aeue.2018.01.037

10. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231

11. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1462-1468, 2005.
doi:10.1109/TMTT.2005.845204

12. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156

13. Thummaluru, S. R. and R. K. Chaudhary, "Mu-negative metamaterial filter-based isolation technique for MIMO antennas," Electronics Letters, Vol. 53, 644-646, 2017.
doi:10.1049/el.2017.0809

14. Pozar, D. M., Microwave Engineering, John Willey & Sons, 2011.

15. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

16. Kordiboroujeni, Z. and J. Bornemann, "Designing the width of substrate integrated waveguide structures," IEEE Microwave and Wireless Components Letters, Vol. 23, 518-520, 2013.
doi:10.1109/LMWC.2013.2279098

17. Alu, A., N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas and Propagation Magazine, Vol. 49, 23-36, 2007.
doi:10.1109/MAP.2007.370979

18. Milias, C., R. B. Andersen, P. I. Lazaridis, Z. D. Zaharis, B. Muhammad, J. T. B. Kristensen, A. Mihovska, and D. D. S. Hermanse, "Metamaterial-inspired antennas: A review of the state of the art and future design challenges," IEEE Access, Vol. 09, 89846-89865, 2021.
doi:10.1109/ACCESS.2021.3091479

19. Jokanovic, B., R. H. Geschke, T. S. Beukman, and V. Milosevic, "Metamaterials: Characteristics, design and microwave applications," SAIEE African Research Journal, Vol. 101, 82-92, 2010.
doi:10.23919/SAIEE.2010.8531553

20. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

21. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2081, 1999.
doi:10.1109/22.798002

23. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

24. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, 197401-1-4, 2004.
doi:10.1103/PhysRevLett.93.197401

25. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

26. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 05, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

27. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, M. Naser-Moghadasi, M. O. Akinsolu, C. H. See, B. Liu, R. A. ABD-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 08, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698

28. Alibakhshikenari, M., "Printed planar patch antennas based on metamaterial," International Journal of Electronics Letters, Vol. 02, 37-42, 2014.
doi:10.1080/21681724.2013.874042

29. Sadeghzadeh, R. A., M. Alibakhshikenari, and M. Naser-Moghadasi, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microwave and Optical Technology Letters, Vol. 58, 69-71, 2016.
doi:10.1002/mop.29491

30. Alibakhshikenari, M., A. Andujar, and J. Anguera, "New compact printed leaky-wave antenna with beam steering," Microwave and Optical Technology Letters, Vol. 58, 215-217, 2016.
doi:10.1002/mop.29538

31. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, and B. S. Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 88-96, 2016.
doi:10.1002/mmce.20942

32. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, 217-225, 2016.
doi:10.1002/mmce.20956

33. Alibakhshikenari, M., M. Naser-Moghadasi, B. S. Virdee, A. Andujar, and J. Anguera, "Compact antenna based on a composite right/left-handed transmission line," Microwave and Optical Technology Letters, Vol. 57, 1785-1788, 2015.
doi:10.1002/mop.29191

34. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems," Microwave and Optical Technology Letters, Vol. 57, 2339-2344, 2015.
doi:10.1002/mop.29328

35. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "A novel monofilar-archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar system," Microwave and Optical Technology Letters, Vol. 60, 2055-2060, 2018.
doi:10.1002/mop.31300

36. Alibakhshikenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," International Journal of Electronics and Communication (AEU), Vol. 69, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017

37. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications," International Journal of Electronics and Communication (AEU), Vol. 70, 910-919, 2016.
doi:10.1016/j.aeue.2016.04.003

38. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Travelling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," International Journal of Electronics and Communication (AEU), Vol. 70, 1645-1650, 2016.
doi:10.1016/j.aeue.2016.10.003

39. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 12, 1586-1599, 2018.
doi:10.1080/09205071.2018.1460280

40. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 09, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172

41. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Composite right-left-handed- based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers," IET Microwaves, Antennas & Propagation, Vol. 09, 1713-1726, 2015.
doi:10.1049/iet-map.2015.0308

42. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069

43. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices andmultiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141

44. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. Ali, F. Falcone, and E. Limiti, "Wideband printed monopole antenna for application in wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, 1222-1230, 2018.
doi:10.1049/iet-map.2017.0894

45. Alibakhshikenari, M., B. S. Virdee, M. Khalily, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimetre-wave applications," IET Microwaves, Antennas & Propagation, Vol. 13, 1129-1133, 2019.
doi:10.1049/iet-map.2018.5101

46. Alibakhshikenari, M., M. Khalily, B. S. Virdee, A. Ali, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Double-port slotted-antenna with multiple miniaturized radiatorsfor wideband wireless communication systemsand portable devices," Progress In Electromagnetics Research C, Vol. 90, 1-13, 2019.
doi:10.2528/PIERC18011204

47. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Overcome the limitations of performance parameters of on-chip antennas based on metasurface and coupled Feeding approaches for applications in system-on-chip for THz integrated-circuits," IEEE Asia-Pacific Microwave Conference, 2019.

48. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, T. A. Denidni, and E. Limiti, "High-gain on-chip antenna design on silicon layerwith aperture excitation for terahertz applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 1576-1580, 2020.
doi:10.1109/LAWP.2020.3010865

49. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Impedance matching network based on metasurfaces (2-d metamaterials) for electrically small antennas," IEEE International Symposium on Antennas and Propagation and North America Radio Science Meeting, 2020.

50. Alibakhshikenari, M., B. S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, C. H. See, I. Elfergani, C. Zebiri, R. Abd-Alhameed, I. Huynen, J. Rodriguez, T. A. Denidni, F. Falcone, and E. Limiti, "Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network," IEEE Access, Vol. 09, 67916-67927, 2021.
doi:10.1109/ACCESS.2021.3076975

51. Alibakhshikenari, M., B. S. Virdee, P. Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, R. Abd-Alhameed, F. Falcone, and I. Huynen, "Metamaterial-inspired antenna array for application in microwave breast imagingsystems for tumor detection," IEEE Access, Vol. 08, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672

52. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Aissa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. Abd-Alhamee, F. Falcone, and E. Limiti, "A comprehensive survey on various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems," IEEE Access, Vol. 08, 192965-193004, 2020.
doi:10.1109/ACCESS.2020.3032826

53. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Meta-surface wall suppression of mutual coupling betweenmicrostrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908

54. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 07, 198, 2018.
doi:10.3390/electronics7090198

55. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. H. Ali, F. Falcone, and E. Limiti, "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagneticbandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103

56. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, K. Quazzane, and E. Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonicbandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, 183-188, 2020.
doi:10.1049/iet-map.2019.0362

57. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 07, 23606-23614, 2019.
doi:10.1109/ACCESS.2019.2899326

58. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, and E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slabfor densely packed array antennas," IEEE Access, Vol. 07, 51827-51840, 2019.
doi:10.1109/ACCESS.2019.2909950

59. Alibakhshikenari, M., M. Vittori, S. Colangeli, B. S. Virdee, A. Andujar, J. Anguera, and E. Limiti, "EM isolation enhanced based on metamaterial concept in antenna array system to support full-duplex application," IEEE Asia Pacific Microwave Conference, 2017.

60. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead forMIMO systems," IEEE Asia Pacific Microwave Conference, 2018.

61. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays usingmetamaterial supersubstrate," 12th European Conference on Antennas and Propagation, 2018.

62. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, A. Andujar, J. Anguera, and E. Limiti, "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," 48th European Microwave Conference, 2018.

63. Saghati, A. P., A. P. Saghati, and K. Entesari, "An ultra-miniature SIW cavity-backed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 313-316, 2016.

64. Lajevardi, M. E. and M. Kamyab, "Ultra-miniaturized metamaterial-inspired SIW textile antenna for off-body applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3155-3158, 2017.
doi:10.1109/LAWP.2017.2766201

65. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance," IEEE Transactions on Antennas and Propagation, Vol. 58, 3856-3864, 2010.
doi:10.1109/TAP.2010.2078449

66. Pandit, S., A. Mohan, and P. Ray, "A low-profile high-gain substrate integrated waveguide slot antenna with suppressed cross-polarization using metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1614-1617, 2017.

67. Pandit, S., A. Mohan, and P. Roy, "Metamaterial-inspired low-profile high-gain slot antenna," Microwave and Optical Technology Letters, 1-6, 2019.

68. Pandit, S., A. Mohan, and P. Roy, "Square-ring metamaterial for radiation characteristics enhancement of an SIW cavity-backed slot antenna," International Journal of RF and Microwave Computer-Aided Engineering, e21981, 1-8, 2019.

69. Althuwayb, A. A., "Enhanced radiation gain and efficiency of a metamaterial-inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems," Microwave and Optical Technology Letters, Vol. 63, 1892-1898, 2021.

70. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Transactions on Antennas and Propagation, Vol. 59, 767-775, 2011.

71. Haghighi, S. S., A.-A. Heidari, and M. Movahhedi, "Three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, 4578-4582, 2015.

72. Nasimuddin, Z. N. Chen, and X. Qing, "Multilayered composite right/left-handed leaky-wave antenna with consistent gain," IEEE Transactions on Antennas and Propagation, Vol. 60, 5056-5062, 2012.

73. Sarkar, A., M. Adhikary, A. Sharma, A. Biswas, and M. J. Akhtar, "Composite right/left-handed compact and high-gain leaky-wave antenna using complementary spiral resonator on HMSIW for Ku band applications," IET Microwaves, Antennas & Propagation, Vol. 12, 1310-1315, 2018.

74. Alibakshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with +-30◦ frequency beam-scanning capability at millimetre-waves," Electronics, Vol. 8, 1-15, 2019.

75. Sarkar, A., A. Sharma, A. Biswas, and M. J. Akhtar, "EMSIW-based compact high gain wide full space scanning LWA with improved broadside radiation profile," IEEE Transactions on Antennas and Propagation, Vol. 67, 5652-5657, 2019.

76. Cai, Y., S. Li, T. Wu, and Y. Cao, "A simple configuration of beam steering substrate integrated waveguide aperture antenna loaded with metamaterials," Microwave and Optical Technology Letters, Vol. 64, 744-749, 2022.

77. Dong, Y. and T. Itoh, "Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application," IEEE Transactions on Antennas and Propagation, Vol. 60, 760-771, 2012.

78. Zhai, G., Z. N. Chen, and X. Qing, "Enhanced isolation of a closely-spaced four-element MIMO antenna system using metamaterial mushroom," IEEE Transactions on Antennas and Propagation, Vol. 63, 3362-3370, 2015.

79. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Mutual-coupling reduction in metamaterial substrate integrated waveguide slotted antenna arrays using metal fence isolators for SAR and MIMO applications," 12th International Congress on Artificial Materials for Novel Wave Phenomena, 2018.

80. Alibakhshikenari, M., B. S. Virdee, M. Khalily, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: Study, investigation, and principle," Asia-Pacific Microwave Conference, 2018.

81. Alibakhshikenari, M. and B. S. Virdee, "Study on isolation and radiation behaviours of a 34 x 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125-300 GHz," Optik, Vol. 206, 163222, 2020.

82. Cai, Y., Y. Zhang, L. Yang, Y. Cao, and Z. Qian, "Design of low-profile metamaterials-loaded substrate integrated waveguide horn antenna and its array applications," IEEE Transactions on Antennas and Propagation, Vol. 65, 3732-3737, 2017.

83. Murad, N. A., M. W. Almesheshe, O. Ayop, and M. K. A. Rahim, "Wideband metamaterial substrate integrated waveguide antenna for millimeterwave applications," IEEE International RF and Microwave Conference, 2020.

84. Ameen, M., A. Mishra, and R. K. Chaudhary, "Compact open-ended SIW antenna based on CRLH-TL and U-shaped slots for Ku-band application," International Journal of Electronics and Communication (AEU), Vol. 131, 1-11, 2021.

85. Kumari, V., W. Bhowmik, and S. Srivastava, "Design of high-gain SIW and HMSIW H-plane horn antenna using metamaterial," International Journal of Microwave and Wireless Technologies, Vol. 07, 713-720, 2015.

86. El-Nady, S., R. R. Elsharkawy, A. I. Afifi, and A. S. Abd El-Hameed, "Performance improvement of substrate integrated cavity fed dipole array antenna using ENZ metamaterial for 5G applications," Sensors, Vol. 22, 1-12, 2022.

87. Alibakhshikenari, M., E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, B. S. Virdee, C. Stefanovic, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.

88. Althuwayb, A. A., M. Alibakhshikenari, B. S. Virdee, H. Benetatos, F. Falcone, and E. Limiti, "Antenna on Chip (AOC) design using metasurface and SIW technologies for THz wireless applications," Electronics, Vol. 10, 1120, 2021.

89. Alibakhshikenari, M., B. S. Virdee, A. A. Althuwayb, D. Mariyanayagam, and E. Limiti, "Compact and low-profile on-chip antenna using underside electromagnetic coupling mechanism for terahertzfront-end transceivers," Electronics, Vol. 10, 1264, 2021.

90. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A novel 0.3-0.31 THz GaAs-based transceiver withon-chip slotted metamaterial antenna based on SIW technology," IEEE Asia-Pacific Microwave Conference, 2019.

91. Alibakhshikenari, M., B. S. Virdee, A. A. Althuwayb, S. Aissa, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Study on on-chip antenna design based on metamaterial-inspired and substrate-integrated waveguide properties for millimetre-wave and THzintegrated-circuit applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 42, 17-28, 2021, (https://creativecommons.org/licenses/by/4.0/).

92. Loghmannia, P., M. Kamyab, M. R. Nikkah, and R. Rezaiesarlak, "Miniaturized low-cost phased-array antennausing SIW slot elements," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1434-1437, 2012.

93. Celenk, E. and N. T. Tokan, "Frequency scanning conformal sensor based on SIW metamaterial antenna," IEEE Sensors Journal, Vol. 21, 16015-16023, 2021.

94. Nitas, M., V. Salonikios, S. Raptis, and T. V. Yioultsis, "Design of fully planar cost-effective metamaterial-enhanced SIW antennas for 5G applications," 16th European International Conference on Antennas and Propagation, 2022.

95. Nitas, M., M. T. Passia, and T. V. Yioultsis, "Fully planar slow-wave substrate integrated waveguide based on broadside-coupled complementary split ring resonators for mmwave and 5G components," IET Microwaves, Antennas & Propagation, Vol. 14, 1096-1107, 2020.

96. Dong, Y., V. Zhurbenko, K. Kaslis, J. M. Bjorstorp, and T. M. Johansen, "Wideband split-ring antenna arrays based on substrate integrated waveguide for Ka-band applications," International Journal of Microwave and Wireless Technologies, Vol. 14, 524-536, 2022.

97. Hu, B., T. Wu, Y. Cai, W. Zhang, and B. L. Zhang, "A novel metamaterial-based planar integrated Luneburg lens antenna with wide bandwidth and high gain," IEEE Access, Vol. 08, 4708-4713, 2020.

98. Feng, C., T. Shi, and L. Wang, "Novel broadband Bow-Tie antenna based on complementary split- ring resonators enhanced substrate-integrated waveguide," IEEE Access, Vol. 07, 12397-12404, 2019.

99. Jin, C. and A. Alphones, "Leaky-wave radiation behavior from a double periodic composite right/left-handed substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 60, 1727-1735, 2012.