Vol. 95
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-04-26
3D Transient Non-Linear Magneto-Thermal Analytical Model Calculation in PM Induction Heating Device
By
Progress In Electromagnetics Research B, Vol. 95, 81-101, 2022
Abstract
This paper aims to develop a new 3D analytical model devoted to the study of nonlinear transient magneto-thermal coupled problems in permanent magnet transverse flux induction heating device (PMTFIHD). Firstly, a 3D analytical solution of magneto-dynamic field problem taking into account the transverse edge effect in the workpiece is derived using variables' separation technique. This transverse edge effect allows determining the exact resulting heating power density, which is the heat source of the transient thermal problem in the work-piece. Secondly, the 3D transient analytical solution of the temperature distribution is obtained by combining variables' separation technique and Green's function method. Then, the previous models are exploited in a transient simulations procedure of the magneto-thermal process allowing the nonlinear physical properties of the part to be taking into account. Finally, the performances of the studied PMTFIHD will be calculated, in order to validate the developed 3D coupled models. The simulation results from the developed models are validated with those obtained by the finite element method and the experimental results.
Citation
Ammar Abdi, Youcef Ouazir, Georges Barakat, and Yacine Amara, "3D Transient Non-Linear Magneto-Thermal Analytical Model Calculation in PM Induction Heating Device," Progress In Electromagnetics Research B, Vol. 95, 81-101, 2022.
doi:10.2528/PIERB22010607
References

1. Lucia, O., P. Maussion, E. J. Dede, and J. M. Burdio, "Induction heating technology and its applications: Past developments, current technology, and future challenges," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2509-2520, May 2014.
doi:10.1109/TIE.2013.2281162

2. Mach, F., V. Starman, P. Karban, I. Dolezel, and P. Kus, "Finite element 2D model of induction heating of rotating billets in system of permanent magnets and its experimental verification," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2584-2591, May 2014.
doi:10.1109/TIE.2013.2276025

3. Mach, F., P. Karban, and I. Dolezel, "Induction heating of cylindrical nonmagnetic ingots by rotation in static magnetic field generated by permanent magnets," Journal of Computational and Applied Mathematics, Vol. 236, No. 18, 4732-4744, ELSVIER, Dec. 2012.
doi:10.1016/j.cam.2012.02.035

4. Han, W., et al., "Commercial design and operating characteristics of a 300kW Superconducting Induction Heater (SIH) based on HTS magnets," IEEE Trans. Appl. Supercond., Vol. 29, No. 5, 1-5, Aug. 2019.

5. Choi, J., et al., "Design and performance evaluation of a multi-purpose HTS DC induction heating machine for industrial applications," IEEE Trans. Appl. Supercond., Vol. 25, No. 3, 1-5, Jun. 2015.

6. Lubin, T., D. Netter, J. Leveque, and A. Rezzoug, "Induction heating of aluminium billet subjected to a strong rotating magnetic field produced by superconducting windings," IEEE Trans. Magn., Vol. 45, No. 5, 2118-2127, May 2009.
doi:10.1109/TMAG.2009.2014461

7. Choi, J., C.-K. Lee, S. Cho, M. Park, I.-K. Yu, and M. Iwakuma, "Recent development and research activities of induction heater with high-TC superconducting magnets for commercialization," SN Appl. Sciences, Vol. 1, No. 1, 59-64, 2018.
doi:10.1007/s42452-018-0073-0

8. Abdi, A., Y. Ouazir, G. Barakat, and Y. Amara, "Permanent magnet linear induction heating device: Newtopology enhancing performances," COMPEL, Vol. 37, No. 5, 1755-1767(13), Oct. 2018.
doi:10.1108/COMPEL-01-2018-0026

9. Ammar, A., "2D hybrid magnetic model calculation in axisymmetric device," Progress In Electromagnetics Research Letters, Vol. 103, 15-23, 2022.
doi:10.2528/PIERL22010201

10. Fabbri, M., A. M. Forzan, S. Lupi, A. Morandi, and P. L. Ribani, "Experimental and numerical analysis of DC induction heating of aluminium billets," IEEE Trans. Magn., Vol. 45, No. 1, 192-200, Jan. 2009.
doi:10.1109/TMAG.2008.2005794

11. Runde, M., N. Magnusson, C. Fulbier, and C. Buhrer, "Commercial induction heaters with high temperature superconductor coils," IEEE Trans. Appl. Supercond., Vol. 21, No. 3, 1379-1383, 2011.
doi:10.1109/TASC.2010.2088095

12. Mach, F., P. Karban, I. Dolezel, P. Sima, Z. Jeliek, and , "Model of induction heating of rotating non-magnetic billets and its experimental verification," IEEE Trans. Magn., Vol. 50, No. 2, 309-312, Feb. 26, 2014.
doi:10.1109/TMAG.2013.2286497

13. Bensaidane, H., T. Lubin, S. Mezani, Y. Ouazir, and A. Rezzoug, "A new topology for induction heating system with PM excitation: Electromagnetic model and experimental validations," IEEE Trans. Magn., Vol. 51, No. 10, 3479-3487, Jun. 2015.
doi:10.1109/TMAG.2015.2442515

14. Qin, Z., H. Talleb, and Z. Ren, "A proper generalized decomposition-based solver for nonlinear magnetothermal problems," IEEE Trans. Magn., Vol. 52, No. 1, 1-11, Oct. 2016.

15. Moro, F. and L. Codecasa, "A 3-D hybrid cell method for induction heating problems," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, Jun. 2017.
doi:10.1109/TMAG.2017.2659801

16. Ouazir, Y., A. Abdi, and H. Bensaidane, "2D analytical solution of transverse ux induction heating of the aluminum plates," 2012 XXth International Conference on Electrical Machines, 2733-2738, Marseille, France, Sep. 2012.

17. Fabbri, M., A. M. Forzan, S. Lupi, A. Morandi, and P. L. Ribani, "Experimental and numerical analysis of DC induction heating of aluminium billets," IEEE Trans. Magn., Vol. 45, No. 1, 192-200, Jan. 2009.
doi:10.1109/TMAG.2008.2005794

18. Aliferov, A., F. Dughiero, and M. Forzan, "Coupled magnetothermal FEM model of direct heating of ferromagnetic bended Tubes," IEEE Trans. Magn., Vol. 46, No. 8, 3217-3220, Jul. 19, 2010.
doi:10.1109/TMAG.2010.2046479

19. D'Angelo, L. A. M. and H. De Gersem, "Quasi-3D finite-element method for simulating cylindrical induction-heating devices," IEEE Trans. Magn., Vol. 2, 134-141, Aug. 2017.

20. Qin, Z., H. Talleb, and Z. Ren, "A proper generalized decomposition-based solver for nonlinear magnetothermal problems," IEEE Trans. Magn., Vol. 52, No. . 2, 1-9, Feb. 2016.
doi:10.1109/TMAG.2015.2492462

21. Ennassiri, H., G. Barakat, and Y. Amara, "Steady state hybrid thermal modelling of permanent magnet electrical machines," Proc. Int. Conf. Ecol. Vehicles Renew. Energies (EVER), 1-6, 2016.

22. Zhu, S., M. Cheng, and X. Cai, "Direct coupling method for coupled field-circuit thermal model of electrical machines," IEEE Trans. Magn., Vol. 33, No. 2, 473-482, Jun. 2018.

23. Nategh, S., O. Wallmark, M. Leksell, and S. Zhao, "Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling," IEEE Trans. Energy Convers., Vol. 27, No. 2, 477-488, Jun. 2012.
doi:10.1109/TEC.2012.2188295

24. Boughrara, K., F. Dubas, and R. Ibtiouen, "2-D exact analytical method for steady-state heat transfer prediction in rotating electrical machines," IEEE Trans. Magn., Vol. 54, No. 9, 1-19, Sept. 2018.
doi:10.1109/TMAG.2018.2851212

25. Abdi, A., Y. Ouazir, G. Barakat, and Y. Amara, "Transient quasi-3D magneto-thermal analytical solution in PM induction heating device," COMPEL | The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 39, No. 5, 1131-1144, 2020.
doi:10.1049/pi-a.1958.0036

26. Russell, R. L. and K. H. Norsworthy, "Eddy currents and wall losses inscreened-rotor induction motors," Proceedings of the IEE Part A: Power Engineering, Vol. 105, No. 20, 163, 1958.
doi:10.1109/20.376458

27. Decreux, P. and G. Nicolas, "Finite length effects study in massive iron rotors using 3D electromagnetic field computation," IEEE Trans. Magn., Vol. 31, No. 3, 2096-2099, May 1995.
doi:10.1109/TMAG.2011.2167347

28. De La Barriere, O., S. Hlioui, H. Ben Ahmed, et al. "3-D formal resolution of Maxwell equations for the computation of the no load flux in an axial flux permanent magnet synchronous machine," IEEE Trans. Magn., Vol. 48, No. 1, 128-136, 2012.
doi:10.1109/TIE.2013.2279364

29. Pluk, K. J. W., T. A. van Beek, J. W. Jansen, and E. A. Lomonova, "Modeling and measurements on a finite rectangular conducting plate in an eddy current damper," IEEE Trans. Industrial Electronics, Vol. 61, No. 8, 4061-4072, Aug. 2014.

30. Paul, S., J. Wright, and J. Z. Bird, "3-D steady-state eddy current dampingand stiffness for a finite thickness conductive plate," IEEE Trans. Magn., Vol. 50, No. 11-6301404, Nov. 2014.
doi:10.1109/TMAG.2019.2950389

31. Jin, P., Y. Tian, Y. Lu, Y. Guo, G. Lei, and J. Zhu, "3-D analytical magnetic field analysis of the eddy current coupling with halbach magnets," IEEE Trans. Magn., Vol. 56, No. 1, 1-4, Jan. 2020.
doi:10.1109/TMAG.2015.2455955

32. Lubin, T. and A. Rezzoug, "3-D analytical model for axial- ux eddy-current couplings and brakes under steady-state conditions," IEEE Trans. Magn., Vol. 51, No. 10, 1-12, Oct. 2015.

33. Diriye, A., Y. Amara, and G. Barakat, "Three-dimensional modeling of permanents magnets synchronous machines using a 3D reluctance network," 2018 XIII International Conference on Electrical Machines (ICEM), 2304-2310, Alexandroupoli, Greece, Sep. 2018.

34. Jin, P., Y. Yuan, J. Minyi, F. Shuhua, L. Heyun, H. Yang, and S. L. Ho, "3-D analytical magnetic field analysis of axial flux permanent magnet machine," IEEE Trans. Magn., Vol. 50, No. 11, 8103504, Nov. 2014.
doi:10.1109/TMAG.2019.2953110

35. Sahu, R., P. Pellerey, and K. Laskaris, "Eddy current loss model unifying the effects of reaction field and non-homogeneous 3-D magnetic field," IEEE Trans. Magn., Vol. 56, No. 2, 1-4, Jan. 13, 2020.
doi:10.2528/PIERB16051908

36. Sun, X., S. Luo, L. Chen, R. Zhao, and Z. Yang, "Suspension force modeling and electromagnetic characteristics analysis of an interior bearingless permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 69, 31-45, 2016.
doi:10.2528/PIERB14100902

37. Verez, G., G. Barakat, and Y. Amara, "Influence of slots and rotor poles combinations on noise and vibrations of magnetic origins in `U'-core flux-switching permanent magnet machines," Progress In Electromagnetics Research B, Vol. 61, 149-168, 2014.