Vol. 93
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-09-28
Optimization Design Methodology of Broadband OR Multiband Antenna for RF Energy Harvesting Applications
By
Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021
Abstract
In this paper, a patch antenna (PA) and its self-complementary structure, slot antenna (SA) are proposed and designed for directly matching the impedance of a rectifierat 2.45 GHz resonance frequency. The structures of these antennas comprise three sections, meandered-line, spiral, and a double-folded geometries, which make their geometrical parameters to be varied in easy manner according to design equations. In order to enhance both the desired level of a complex reflection coefficient of antenna at given resonance frequencies and the specified lower and higher frequencies constituting the impedance frequency bands, a new fitness function is presented. This fitness function is applied in designing broadband or multiband antennas having approximately perfect conjugate impedance matching with the impedance of a rectifier suitably used for RF Energy Harvesting (RF EH) application. An optimization design methodology based on two programs operating in synchronous manner, the particle swarm optimization (PSO) implemented in MATLAB simulation tool anda CST MWS Electromagnetic (EM) solver, is applied to the designed PA as an illustrative example. The simulation results reveal that our design methodology is helpful to obtain an optimized PA (OPA) having good impedance matching at the desired resonance frequency along with appropriate band. Measured result of the fabricated prototype is in good agreement with the simulated ones. Moreover, acceptable features such as small size, omnidirectional radiation, and broadband operation satisfy the (2.4-2.5 GHz) WLAN band, which strongly makesthe OPA a good candidate for RF EH applications.
Citation
Reham M. Yaseen, Dhirgham Kamal Naji, and Amina M. Shakir, "Optimization Design Methodology of Broadband OR Multiband Antenna for RF Energy Harvesting Applications," Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021.
doi:10.2528/PIERB21070104
References

1. Ran, L. G., H. K. Cha, and W. T. Park, "RF power harvesting: A review on designing methodologies and applications," Micro. and Nano Syst. Lett., Vol. 5, 14, 2017.
doi:10.1186/s40486-017-0051-0

2. Sleebi, K., D. Deepti, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 1, 1-15, 2018.

3. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, Oct. 2020.
doi:10.1109/MAP.2020.3012872

4. Chen, Y. and C. Chiu, "Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2305-2317, May 2017.
doi:10.1109/TAP.2017.2682228

5. Almoneef, S., "Design of a rectenna array without a matching network," IEEE Access, Vol. 8, 109071-109079, 2020.
doi:10.1109/ACCESS.2020.3001903

6. Song, C., et al., "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvestin," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3950-3961, May 2017.
doi:10.1109/TIE.2016.2645505

7. Sabhan, D., V. J. Nesamoni, and J. Thangappan, "An efficient 2.45 GHz spiral rectenna without a matching circuit for RF energy harvesting," Wireless Personal Communications, Vol. 119, 713-726, 2021.
doi:10.1007/s11277-021-08233-5

8. Jing, J., J. Pang, S. Wang, Z. Qiu, and C. Liu, "A compact hollowed-out loop rectenna without matching network for wireless sensor applications," Int. J. RF Microw. Comput. Aided Eng., e22417, 2020.

9. Zeng, M., A. S. Andrenko, X. Liu, Z. Li, and H.-Z. Tan, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460

10. Wagih, M., A. S. Weddell, and S. Beeby, "Meshed high-impedance matching network-free rectenna optimized for additive manufacturing," IEEE Open Journal of Antennas and Propagation, Vol. 1, 615-626, 2020.
doi:10.1109/OJAP.2020.3038001

11. Visser, H., S. Keyrouz, and A. Smolders, "Optimized rectenna design," Wireless Power Transfer, Vol. 2, No. 1, 44-50, 2015.
doi:10.1017/wpt.2014.14

12. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 11, 929-932, 2012.

13. Hagerty, J. A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 3, 1014-1024, Mar. 2004.
doi:10.1109/TMTT.2004.823585

14. De Long, B. J., A. Kiourti, and J. L. Volakis, "A radiating near-field patch rectenna for wireless power transfer to medical implants at 2.4 GHz," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 2, No. 1, 64-69, Mar. 2018.
doi:10.1109/JERM.2018.2815905

15. Shen, S., C. Chiu, and R. D. Murch, "A dual-port triple-band l-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397

16. Shi, Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 814-822, Feb. 2019.
doi:10.1109/TAP.2018.2882632

17. Nie, M., X. Yang, G. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguid," IEEE Antennas Wireless Propag. Lett., Vol. 14, 986-989, Dec. 2015.
doi:10.1109/LAWP.2015.2388789

18. Hassan, N., Z. Zakaria, Y. W. Sam, and I. N. M. Hanapiah, "Design of dual-band micro strip patch antenna with right-angle triangular aperture slot for energy transfer application," Wiley RF and Microwave Computer-Aided Engineering, e21666, 2018.

19. Mohd Noor, F. S., Z. Zakaria, H. Lago, and M. A. Meor Said, "Dual-band aperture-coupled rectenna for radio frequency energy harvesting," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 1, e21651, 2019.
doi:10.1002/mmce.21651

20. Bhatt, K., S. Kumar, P. Kumar, and C. C. Tripathi, "Highly efficient 2.4 and 5.8 GHz dual-band rectenna for energy harvesting applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 12, 2637-2641, Dec. 2019.
doi:10.1109/LAWP.2019.2946911

21. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wireless Propag. Lett., Vol. 11, 929-932, 2012.

22. Boursianis, A. D., et al., "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, Vol. 2, 151-162, 2021.
doi:10.1109/OJAP.2020.3048495

23. Ahn, C.-H. and S. Oh, "High gain pentagonal loop rectifying antenna," Microw. Opt. Technol. Lett., Vol. 60, 1075-1079, 2018.
doi:10.1002/mop.31110

24. Travassos, X. L., D. A. G. Vieira, and A. C. Lisbo, "Antenna optimization using multiobjective algorithms," ISRN Communications and Networking, Vol. 2012, 2012.

25. Kaur, G., M. Rattan, and C. Jain, "Optimization of swastika slotted fractal antenna using genetic algorithm and bat algorithm for S-band utilities," Wireless Personal Communications, Vol. 97, No. 1, 95-107, 2017.
doi:10.1007/s11277-017-4495-6

26. Kaur, G., M. Ratta, and C. Jain, "Design and optimization of psi (ψ) slotted fractal antenna using ANN and GA for multiband applications," Wireless Personal Communications, Vol. 97, No. 3, 4573-4585, 2017.
doi:10.1007/s11277-017-4739-5

27. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMT, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
doi:10.2528/PIERM12102705

28. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized ve-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
doi:10.2528/PIERB19012905

29. Jin, N. and Y. Rahmat-Samii, "Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3786-3794, 2010.
doi:10.1109/TAP.2010.2078477

30. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binar, single-objective and multiobjective implementation," IEEE Tran. Antennas Propag., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

31. Choudhury, B., S. Manickam, and R. M. Jha, "Particle swarm optimization for multiband metamaterial fractal antenna," Journal of Optimization, 2013.

32. Sun, L.-L., J.-T. Hu, K.-Y. Hu, M.-W. He, and H.-N. Chen, "Multi-species particle swarms optimization based on orthogonal learning and its application for optimal design of a butter y shaped patch antenna," J. Cent. South Univ., Vol. 23, No. 8, 2048-2062, 2016.
doi:10.1007/s11771-016-3261-3

33. Tang, M.-C., X. Chen, M. Li, and R. Ziolkowski, "Particle swarm optimized, 3D-printed, wideband, compact hemispherical antenna," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 11, 2031-2035, 2018.
doi:10.1109/LAWP.2018.2847286

34. Martinez-Fernandez, J., J. M. Gil, and J. Zapata, "Ultrawideband optimized profile monopole antenna by means of simulated annealing algorithm and the finite element method," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1826-1832, 2007.
doi:10.1109/TAP.2007.898593

35. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas and Propagation Magazine, Vol. 59, No. 1, 48-57, 2017.
doi:10.1109/MAP.2016.2630025

36. Monavar, F. M., N. Komjani, and P. Mousavi, "Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1369-1372, 2011.
doi:10.1109/LAWP.2011.2177801

37. Karimkashi, S. and A. A. Kishk, "Invasive weed optimization and its features in electromagnetics," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1269-1278, 2010.
doi:10.1109/TAP.2010.2041163

38. Bhaskar, S. and A. K. Singh, "A compact meander line UHF RFID antenna for passive tag applications," Progress In Electromagnetics Research M, Vol. 99, 57-67, 2021.
doi:10.2528/PIERM20082103

39. Rahmat-Samii, Y., J. M. Kovitz, and H. Rajagopalan, "Nature-inspired optimization techniques in communication antenna designs," Proceedings of the IEEE, Vol. 100, No. 7, 2132-2144, Jul. 2012.
doi:10.1109/JPROC.2012.2188489