Vol. 81
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-07-09
Electromagnetic Scattering and Emission by Ocean Surfaces Based on Neighborhood Impedance Boundary Condition (NIBC) with Dense Grid: Accurate Emissivity and Sensitivity to Salinity
By
Progress In Electromagnetics Research B, Vol. 81, 141-162, 2018
Abstract
In order to have the required accuracies in method of moments (MoM) for numerical simulations of ocean scattering at microwave frequencies, we need to account for the much larger wavenumber of sea water relative to that of air. This paper presents simulation results of 2D ocean surface scattering with the required accuracies and that energy conservation is obeyed to 0.01%. A dense grid is required to discretize the MoM dual surface integral equation with up to 240 surface unknowns (120 surface electric field unknowns and 120 surface magnetic field unknowns) per free space wavelength. To solve the matrix equation efficiently, we develop a neighborhood impedance boundary condition (NIBC) technique to solve the matrix equation. We next calculate the emissivities of ocean surfaces using NIBC on surface integral equations using pulse basis/point matching and the Nystrom method. Results are illustrated for L-band and show that emissivities using NIBC combined with Nystrom are accurate to 2×10-4 for vertical polarization and 10-4 for the horizontal polarization. This means that our method can meet the accuracy goal of 0.2 psu salinity retrieval for the NASA Aquarius mission. Results of surface fields and emissivities are also compared to that of impedance boundary condition (IBC) which requires only 10 unknowns per free space wavelength.
Citation
Tai Qiao, Yanlei Du, and Leung Tsang, "Electromagnetic Scattering and Emission by Ocean Surfaces Based on Neighborhood Impedance Boundary Condition (NIBC) with Dense Grid: Accurate Emissivity and Sensitivity to Salinity," Progress In Electromagnetics Research B, Vol. 81, 141-162, 2018.
doi:10.2528/PIERB18050706
References

1. Ulaby, F. T. and D. G. Long, Microwave Radar and Radiometric Remote Sensing, University of Michigan Press, Ann Arbor, 2015.

2. Fung, A. K. and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, 2010.

3. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, New York, 1985.

4. Yueh, S., R. Kwok, F. Li, S. Nghiem, and W. Wilson, "Polarimetric passive remote sensing of ocean wind vectors," Radio Science, Vol. 29, No. 4, 799-814, Jul. 1994.
doi:10.1029/94RS00450

5. Irisov, V. G., "Small-slope expansion for thermal and reflected radiation from a rough surface," Waves in Random Media, Vol. 7, 1-10, Jan. 1997.
doi:10.1088/0959-7174/7/1/001

6. Gu, X. X., L. Tsang, H. Braunisch, and P. Xu, "Modeling absorption of rough interface between dielectric and conductive medium," Microwave and Optical Technology Letters, Vol. 49, 7-13, Jan. 2007.
doi:10.1002/mop.22023

7. Chen, K. S., T. D. Wu, L. Tsang, Q. Li, J. C. Shi, and A. K. Fung, "Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 90-101, Jan. 2003.
doi:10.1109/TGRS.2002.807587

8. Johnson, J. T., "A study of ocean-like surface thermal emission and reflection using Voronovich’s small slope approximation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 306-314, Feb. 2005.
doi:10.1109/TGRS.2004.841480

9. Guerin, C. A. and J. T. Johnson, "A simplified formulation for rough surface cross-polarized backscattering under the second-order small-slope approximation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 6308-6314, Nov. 2015.

10. Voronovich, A., "Small-slope approximation for electromagnetic-wave scattering at a rough interface of dielectric half-spaces," Waves in Random Media, Vol. 4, 337-367, Jul. 1994.

11. Johnson, J. and M. Zhang, "Theoretical study of the small slope approximation for ocean polarimetric thermal emission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2305-2316, Sep. 1999.
doi:10.1109/36.789627

12., Irisov and V., "Small-slope expansion for thermal and reflected radiation from a rough surface," Waves in Random Media, Vol. 7, No. 1, 1-10, Jan. 1997.
doi:10.1088/0959-7174/7/1/001

13. Plant, W. J., "A two-scale model of short wind-generated waves and scatterometry," Journal of Geophysical Research: Oceans, Vol. 91, No. C9, 10735-10749, 1986.
doi:10.1029/JC091iC09p10735

14. Johnson, J. T., "An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, 560-568, Mar. 2006.
doi:10.1109/TGRS.2005.855999

15. Yueh, S., "Modeling of wind direction signals in polarimetric sea surface brightness temperatures," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 6, 1400-1418, Nov. 1997.
doi:10.1109/36.649793

16. Lagerloef, G., F. R. Colomb, D. Le Vine, F. Wentz, S. Yueh, C. Ruf, et al. "The aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge," Oceanography, Vol. 21, 68-81, Mar. 2008.
doi:10.5670/oceanog.2008.68

17. Le Vine, D. M., E. P. Dinnat, T. Meissner, S. H. Yueh, F. J. Wentz, S. E. Torrusio, et al. "Status of aquarius/SAC-D and aquarius salinity retrievals," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, 5401-5415, Dec. 2015.
doi:10.1109/JSTARS.2015.2427159

18. Fore, A. G., S. H. Yueh, W. Q. Tang, B. W. Stiles, and A. K. Hayashi, "Combined active/passive retrievals of ocean vector wind and sea surface salinity with SMAP," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 7396-7404, Dec. 2016.
doi:10.1109/TGRS.2016.2601486

19. Yueh, S., W. Q. Tang, A. Fore, A. Hayashi, Y. T. Song, and G. Lagerloef, "Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval," Journal of Geophysical Research-Oceans, Vol. 119, 5360-5379, Aug. 2014.
doi:10.1002/2014JC009939

20. Yang, J. S., Y. Du, and J. C. Shi, "Polarimetric simulations of bistatic scattering from perfectly conducting ocean surfaces with 3m/s wind speed at L-band," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, 1176-1186, Mar. 2016.
doi:10.1109/JSTARS.2015.2443071

21. Johnson, J. T., R. T. Shin, J. A. Kong, L. Tsang, and K. Pak, "A numerical study of ocean polarimetric thermal emission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, 8-20, Jan. 1999.
doi:10.1109/36.739089

22. Ao, C. O., P. O. Orondo, Y. Zhang, and J. A. Kong, "Electromagnetic model of thermal emission from foam-covered ocean surface using dense medium radiative transfer theory," IGARSS 2000: IEEE 2000 International Geoscience and Remote Sensing Symposium, Vol. I–VI, Proceedings, 1277-1279, 2000.

23. Soriano, G., C. A. Guerin, and M. Saillard, "Microwave ocean scattering at low-grazing angles with the GMoM," 7th European Radar Conference, 5-8, 2010.

24. Johnson, J. T. and H. T. Chou, "Numerical studies of low grazing angle backscatter from 1D and 2D impedance surfaces," 1998 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 4, 2295-2297, 1998.

25. Qiao, T., L. Tsang, D. Vandemark, S. Yueh, T. H. Liao, F. Nouguier, and B. Chapron, "Sea surface radar scattering at L-band based on numerical solution of Maxwell’s equations in 3-D (NMM3D)," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 6, 3137-3147, Jun. 2018.
doi:10.1109/TGRS.2018.2792432

26. Tsang, L., J. A. Kong, and R. T. Shin, Scattering of Electromagnetic Waves, Vol. 2, Scattering of Electromagnetic Waves: Numerical Simulations, John Wiley & Sons, 2000.

27. Toporkov, J., R. Marchand, and G. Brown, "On the discretization of the integral equation describing scattering by rough conducting surfaces," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 1, 150-161, Jan. 1998.
doi:10.1109/8.655462

28. Tsang, L. and Q. Li, "Numerical solution of scattering of waves by lossy dielectric surfaces using a physics-based two-grid method," Microwave and Optical Technology Letters, Vol. 16, 356-364, Dec. 20, 1997.

29. Canino, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nystrom discretization," Journal of Computational Physics, Vol. 146, 627-663, Nov. 1, 1998.

30. Gedney, S. D., "On deriving a locally corrected Nystrom scheme from a quadrature sampled moment method," IEEE Transactions on Antennas and Propagation, Vol. 51, 2402-2412, Sep. 2003.
doi:10.1109/TAP.2003.816305

31. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," Journal of Geophysical Research-Oceans, Vol. 102, 15781-15796, Jul. 15, 1997.

32. Qiao, T., L. Tsang, and S. Tan, "Scattering of lossy dielectric surfaces in full wave simulation of Maxwell’s equations with dense grid and neighborhood impedance boundary conditions," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), 3054-3057, Singapore, Nov. 19–22, 2017.

33. Klein, L. A. and C. T. Swift, "Improved model for dielectric-constant of sea-water at microwavefrequencies," IEEE Transactions on Antennas and Propagation, Vol. 25, 104-111, 1977.
doi:10.1109/TAP.1977.1141539

34. Liao, T. H., L. Tsang, S. W. Huang, N. Niamsuwan, S. Jaruwatanadilok, S. B. Kim, et al. "Copolarized and cross-polarized backscattering from random rough soil surfaces from L-band to Ku-band using numerical solutions of Maxwell’s equations with near-field precondition," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 651-662, Feb. 2016.
doi:10.1109/TGRS.2015.2451671

35. Tsang, L., I. S. Koh, T. H. Liao, S. W. Huang, X. L. Xu, E. G. Njoku, et al. "Active and passive vegetated surface models with rough surface boundary conditions from NMM3D," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, 1698-1709, Jun. 2013.
doi:10.1109/JSTARS.2013.2257694

36. Huang, S. W., L. Tsang, E. G. Njoku, and K. S. Chan, "Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of maxwell equations in three-dimensional simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 2557-2568, Jun. 2010.
doi:10.1109/TGRS.2010.2040748

37. Camps, A., N. Vall-llossera, N. Duffo, F. Torres, and I. Corbella, "Performance of sea surface salinity and soil moisture retrieval algorithms with different auxiliary datasets in 2-D L-band aperture synthesis interferometric radiometers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 1189-1200, May 2005.
doi:10.1109/TGRS.2004.842096

38. Camps, A., J. Font, M. Vall-Llossera, I. Corbella, N. Duffo, F. Torres, et al. "Determination of the sea surface emissivity at L-band and application to SMOS salinity retrieval algorithms: Review of the contributions of the UPC-ICM," Radio Science, Vol. 43, Jun. 20, 2008.

39. Zhang, C., H. Liu, L. Wu, and J. Wu, "Imaging simulation of the microwave radiometer aboard the micap for sea surface salinity measurement," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3469-3472, 2015.
doi:10.1109/IGARSS.2015.7326567

40. Misra, S., S. Brow, S. Yueh, and T. Lee, "Enabling the next generation of salinity, sea surface temperature and wind measurements from space: Instrument challenges," Progress In Electromagnetics Research Symposium Abstracts, 319, Singapore, Nov. 19–22, 2017.

41. Brow, S., S. Misra, S. Yueh, and T. Lee, "A next generation spaceborne ocean state observatory: Surface salinity, temperature and ocean winds from equator to Pole," Progress In Electromagnetics Research Symposium Abstracts, 320, Singapore, Nov. 19–22, 2017.