Vol. 78
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-09-25
Accurate Determination of Gold Nanorods Concentrations from Optoacoustic Signals Detected at 870 nm and 905 nm by Using High-Power Diode Lasers with Fast Switching Electronics
By
Progress In Electromagnetics Research B, Vol. 78, 143-154, 2017
Abstract
Optoacoustic imaging (OAI) is an emerging biomedical technique that allows visualization of in-depth tissues by using ultrasonic signals generated by short laser pulses. In this work, the authors combine the optical power of several pulsed high-power diode lasers (HPDLs) at 870 nm and 905 nm to a 7-to-1 675-μm fiber bundle to generate optoacoustic (OA) signals from different mixtures of two gold nanorods solutions with absorbance peak at ~860 nm and ~900 nm, respectively. The pulses produced to generate OA signals are alternated between the two wavelengths by a microcontroller circuit with fast switching (0.5 ms). From the amplitude of the OA signals, the concentrations of the nanoparticles solutions are easily estimated with high accuracy using a fluence model. The results achieved with the proposed system show very good agreement between the concentrations of gold nanorods estimated from measurements and the expected values.
Citation
Luca Leggio, Daniel Gallego, Raul Arroyo, Sandeep Babu Gawali, Sergio Rodriguez, Miguel Sanchez, Guillermo Carpintero del Barrio, and Horacio Lamela, "Accurate Determination of Gold Nanorods Concentrations from Optoacoustic Signals Detected at 870 nm and 905 nm by Using High-Power Diode Lasers with Fast Switching Electronics," Progress In Electromagnetics Research B, Vol. 78, 143-154, 2017.
doi:10.2528/PIERB17080810
References

1. Xu, M. H. and L. V. Wang, "Photoacoustic imaging in biomedicine," Review of Scientific Instruments, Vol. 77, No. 4, 041101, 2006.
doi:10.1063/1.2195024

2. Xia, J., J. Yao, and L. V. Wang, "Photoacoustic tomography: principles and advances," Progress In Electromagnetics Research, Vol. 147, 1-22, 2014.
doi:10.2528/PIER14032303

3. Beard, P. C., "Biomedical photoacoustic imaging," Interface Focus, Vol. 1, No. 4, 602-631, 2011.
doi:10.1098/rsfs.2011.0028

4. Gusev, V. E. and A. A. Karabutov, Laser Optoacoustics, American Institute of Physics, New York, 1993.

5. Li, C. H. and L. V. Wang, "Photoacoustic tomography and sensing in biomedicine," Physics in Medicine and Biology, Vol. 54, No. 19, R59-R97, 2009.
doi:10.1088/0031-9155/54/19/R01

6. Lee, J., Y. J. Lee, E. J. Jeong, M. Y. Jung, S. Lee, B. K. Kim, and D. H. Song, "Gain-switched Ti:sapphire laser-based photoacoustic imaging," Applied Optics, Vol. 55, No. 20, 5419-5422, 2016.
doi:10.1364/AO.55.005419

7. Upputuri, P. K. and M. Pramanik, "Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system," Biomedical Optics Express, Vol. 6, No. 10, 4118-4129, 2015.
doi:10.1364/BOE.6.004118

8. Friedrich, C. S., M. C. Wawreczko, M. P. Mienkina, N. C. Gerhardt, G. Schmitz, and M. R. Hofmann, "Compact semiconductor laser sources for photoacoustic imaging," Proceedings of SPIE, Vol. 7177, 71772H, 2009.
doi:10.1117/12.809261

9. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/ALGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102

10. Sonawane, U. S., E. P. Samuel, C. K. Kasar, and D. S.Patil, "Nanosimulation of electron confinement in cerium doped zinc oxide nanowire structure for light emitting devices," Optik, Vol. 127, No. 12, 4937-4940, 2016.
doi:10.1016/j.ijleo.2016.02.051

11. Patil, D. S. and D. K. Gautam, "Computer analysis and optimization of physical and material parameters of the blue laser diode," Optics Communications, Vol. 201, No. 4–6, 413-423, 2002.
doi:10.1016/S0030-4018(01)01703-5

12. Allen, T. J. and P. C. Beard, "Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging," Optics Letters, Vol. 31, No. 23, 3462-3464, 2006.
doi:10.1364/OL.31.003462

13. Zeng, L. M., G. D. Liu, D. W. Yang, and X. R. Ji, "Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation," Applied Physics Letters, Vol. 102, No. 5, 053704, 2013.
doi:10.1063/1.4791566

14. Wang, T. H., S. Nandy, H. S. Salehi, P. D. Kumavor, and Q. Zhu, "A low-cost photoacoustic microscopy system with a laser diode excitation," Biomedical Optics Express, Vol. 5, No. 9, 3053-3058, 2014.
doi:10.1364/BOE.5.003053

15. Allen, T. J. and P. C. Beard, "Dual wavelength laser diode excitation source for 2D photoacoustic imaging," Proceedings of SPIE, Vol. 6437, 64371U, 2007.
doi:10.1117/12.698651

16. Kolkman, R. G. M., W. Steenbergen, and T. G. van Leeuwen, "In vivo photoacoustic imaging of blood vessels with a pulsed laser diode," Lasers in Medical Science, Vol. 21, No. 3, 134-139, 2006.
doi:10.1007/s10103-006-0384-z

17. Zeng, L. M., G. D. Liu, D. W. Yang, and X. R. Ji, "3D-visual laser-diode-based photoacoustic imaging," Optics Express, Vol. 20, No. 2, 1237-1246, 2012.
doi:10.1364/OE.20.001237

18. Hempel, M., J. W. Tomm, F. La Mattina, I. Ratschinski, M. Schade, I. Shorubalko, M. Stiefel, H. S. Leipner, F. M. Kießling, and T. Elsaesser, "Microscopic origins of catastrophic optical damage in diode lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 4, 1500508, 2013.
doi:10.1109/JSTQE.2012.2236303

19. Leggio, L., D. C. Gallego, S. B. Gawali, E. Dadrasnia, M. Sanchez, S. Rodrıguez, M. Gonzalez, G. Carpintero, M. Osinski, and H. Lamela, "Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies," Proceedings of SPIE, Vol. 9708, 97083M, 2016.

20. Zhang, H. F., K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Applied Physics Letters, Vol. 90, No. 5, 053901-053903, 2007.
doi:10.1063/1.2435697

21. Andree, S., J. Helfmann, and I. Gersonde, "Determination of chromophore concentrations from spatially resolved skin measurements," Proceedings of SPIE, Vol. 8087, 808716, 2011.
doi:10.1117/12.889793

22. Laufer, J. G., B. Cox, E. Zhang, and P. C. Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," Applied Optics, Vol. 49, No. 8, 1219-1233, 2010.
doi:10.1364/AO.49.001219

23. Cox, B., J. G. Laufer, S. Arridge, and P. C. Beard, "Quantitative spectroscopic photoacoustic imaging: A review," Journal of Biomedical Optics, Vol. 17, No. 6, 061202, 2012.
doi:10.1117/1.JBO.17.6.061202

24. Lin, A. W., N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early contrast agents for early cancer detection: Model-based analysis of gold nanoshells," Journal of Biomedical Optics, Vol. 10, No. 6, 064035, 2005.
doi:10.1117/1.2141825

25. Cunningham, V., H. Lamela, and D. C. Gallego, "Laser optoacoustic scheme for highly accurate characterization of gold nanostructures in liquid phantoms for biomedical applications," Journal of Nanophotonics, Vol. 7, No. 1, 073078, 2013.
doi:10.1117/1.JNP.7.073078

26. Li, W. and X. Chen, "Gold nanoparticles for photoacoustic imaging," Nanomedicine, Vol. 10, No. 2, 299-320, 2015.
doi:10.2217/nnm.14.169

27. Wang, L. V., Photoacoustic Imaging and Spectroscopy, CRC Press Eds., Boca Raton, Florida, 2009.
doi:10.1201/9781420059922