Vol. 74
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-10
Mathematical Model of Large Rectenna Arrays for Wireless Energy Transfer
By
Progress In Electromagnetics Research B, Vol. 74, 77-91, 2017
Abstract
A mathematical model of a large rectenna array (LRA) is presented. It is shown that matrices describing the LRA linear subsystem have a number of specific features that must be considered when the rectenna mathematical model is developed. The state equation for the LRA was obtained. It is shown that the model functioning in nonlinear mode of the infinite rectenna array can be reduced to finding the parameters of one equivalent receiver-rectifier element (RRE) at the fundamental frequency and its harmonic. The external parameters of the RRE and LRA characteristics were obtained.
Citation
Dmitriy V. Gretskih, Andrey V. Gomozov, Viktor A. Katrich, Anatoliy I. Luchaninov, Mikhail Nesterenko, and Yuriy M. Penkin, "Mathematical Model of Large Rectenna Arrays for Wireless Energy Transfer," Progress In Electromagnetics Research B, Vol. 74, 77-91, 2017.
doi:10.2528/PIERB17010503
References

1. Mankins, Y. C., "A technical overview of the “sun tower” solar power satellite concept," Acta Astronavtica, Vol. 50, 369-377, 2002.
doi:10.1016/S0094-5765(01)00167-9

2. Masumoto, H., "Research on solar power satellites and microwave power transmission in Japan," IEEE Microwave Magazine, Vol. 3, 36-45, 2002.
doi:10.1109/MMW.2002.1145674

3. Hashimoto, K. and N. Shinohara, "Solar power satellite and its EMC issues," EMC’09, 29-32, Kyoto, 2009.

4. Shinohara, N., "Beam control technologies with a high efficiency phased array for microwave power transmission in Japan," Proceedings of the IEEE, Vol. 101, 1448-1463, 2013.
doi:10.1109/JPROC.2013.2253062

5. Celeste, A., P. Jeanty, and G. Pignolet, "Case study in Reunion Island," Acta Astronautica, Vol. 54, 253-258, 2004.
doi:10.1016/S0094-5765(02)00302-8

6. Gomozov, A. V., D. V. Gretskih, V. M. Shokalo, and Sh. F. A. Al-Sammarraie, "Principles of construction and application of the microwave systems for wireless energy transmission of ground and space basing," IEEE Computational Problems of Electrical Engineering, Vol. 2, 15-23, 2012.

7. Dickinson, R. M., "Power in the sky: Requirements for microwave wireless power beamers for powering high-altitude platforms," IEEE Microwave Magazine, Vol. 14, 36-47, 2013.
doi:10.1109/MMM.2012.2234632

8. Wu, Y., J. Linnartz, et al. "Modeling of RF energy scavenging for batteryless wireless sensors with low input power personal indoor and mobile radio communications," PIMRC, IEEE 24th International Symposium, 527-531, 2013.

9. Lu, X., P. Wang, D. Niyato, et al. "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys and Tutorials, Vol. 17, 757-789, 2015.
doi:10.1109/COMST.2014.2368999

10. Kotter, D. K., S. D. Novack, W. D. Slafer, and P. J. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering-transactions of the Asme, Vol. 132, 2010, http://www.academia.edu/8220294.
doi:10.1115/1.4000577

11. Bankov, S. E., "Signal detection in a radiating nonlinear electromagnetic crystal," Journal of Radio Electronics, No. 1, 2012, http://jre.cplire.ru/jre/jan12/1/text.pdf (in Russian).

12. Semenikhina, D. V., A. I. Semenikhin, T. Y. Privalova, and V. V. Demshevsky, "Parametrical excitation microstrip lattice with nonlinear loads," International Conference on Electromagnetics in Advanced Applications (ICEAA), 245-248, 2014.
doi:10.1109/ICEAA.2014.6903855

13. Huang, W., B. Zhang, X. Chen, K. Huang, and C. Liu, "Study on an S-band rectenna array for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.
doi:10.2528/PIER12120314

14. Matsunaga, T., E. Nishiyama, and I. Toyoda, "5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection," IEEE Trans. Antennas and Propag., Vol. 63, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319

15. Shifrin, Ya. S. and A. I. Luchaninov, "Antennas with nonlinear elements," The Reference Manual on Antenna Equipment, Vol. 1, 207-235, Moscow, 1997 (in Russian).

16. Luchaninov, A. I. and Y. S. Shifrin, "Mathematical model of antenna with lumped nonlinear elements," Telecommunications and Radio Engineering, Vol. 66, No. 9, 763-803, 2007.
doi:10.1615/TelecomRadEng.v66.i9.10

17. Shifrin, Y. S., A. I. Luchaninov, and A. S. Posokhov, "Structural model of antennas with nonlinear elements," Telecommunications and Radio Engineering, Vol. 59, No. 1–2, 32-48, 2003.
doi:10.1615/TelecomRadEng.v59.i12.20

18. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, John Wiley & Sons Inc, New York, 1972.

19. Sazonov, D. M., Multi-element Antenna Systems, Matrix Approach, Publishing House “Radiotekhnika”, Moscow, 2015 (in Russian).

20. Shokalo, M. V., A. I. Luchaninov, A. M. Rybalro, and D. V. Gretskih, Large-aperture rectifying antennas for wireless energy transfer by a microwave beam, Kollegium, Kharkov, 2006 (in Russian).

21. Nesterenko, M. V., V. A. Katrich, and V. M. Dakhov, "Formation of the radiation field with the set spatial-polarization characteristics by the crossed impedance vibrators system," Radiophysics and Quantum Electronics, Vol. 53, 371-378, 2010.
doi:10.1007/s11141-010-9236-6

22. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.
doi:10.1007/978-1-4419-7850-9

23. Nesterenko, M. V., V. A. Katrich, V. M. Dakhov, and S. L. Berdnik, "Impedance vibrator with arbitrary point of excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
doi:10.2528/PIERB08022805

24. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.

25. Nesterenko, M. V., V. A. Katrich, S. L. Berdnik, Y. M. Penkin, and V. M. Dakhov, "Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902

26. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105