Vol. 72
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-01-12
Efficient SAR Raw Data Simulation Including Trajectory Deviations and Antenna Pointing Errors
By
Progress In Electromagnetics Research B, Vol. 72, 111-128, 2017
Abstract
Synthetic aperture radar (SAR) raw signal simulation is profoundly useful for validating SAR system design parameters, testing the effectiveness of different processing algorithms, studying the effects of motion errors, etc. Simulating signal data in frequency domain is more efficient than in time domain. However, the former is difficult account for the effects of both sensor trajectory deviations and antenna pointing error for the stripmap SAR mode. In this paper, we attempt to extend the possibility of extending the Fourier domain approach to account for trajectory deviations as well as antenna beam pointing errors, which is more concerned for airborne SAR systems. After demonstrating a full two-dimensional Fourier domain simulation, an efficient simulation approach is proposed under certain reasonable assumptions. The proposed approach has higher computational efficiency than simulation in time-domain and also allows for imaging an extended scene. The validity of the proposed approaches is analyzed and discussed. Finally, numerical examples are presented to verify the effectiveness and efficiency of the approach.
Citation
Yuhua Guo, Qin-Huo Liu, Bo Zhong, and Xiaoyuan Yang, "Efficient SAR Raw Data Simulation Including Trajectory Deviations and Antenna Pointing Errors," Progress In Electromagnetics Research B, Vol. 72, 111-128, 2017.
doi:10.2528/PIERB16102102
References

1. Franceschetti, G. and G. Schirinzi, "A SAR processor based on two-dimensional FFT codes," IEEE Trans. Aerosp. Electron. Syst., Vol. 26, No. 2, 142-149, 1990.
doi:10.1109/7.53462

2. Kulpa, K., P. Samczynski, M. Malanowski, A. Gromek, D. Gromek, W. Gwarek, B. Salski, and G. Tanski, "An advanced SAR simulator of three-dimensional structures combining geometrical optics and full-wave electromagnetic methods," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 1, 776-784, 2014.
doi:10.1109/TGRS.2013.2283267

3. Franceschetti, G., A. Iodice, D. Riccio, and G. Ruello, "SAR raw signal simulation for urban structures," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 9, 1986-1995, 2003.
doi:10.1109/TGRS.2003.814626

4. Balz, T. and U. Stilla, "Hybrid GPU-based single- and double-bounce SAR simulation," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 10, 3519-3529, 2009.
doi:10.1109/TGRS.2009.2022326

5. Dumont, R., C. Guedas, E. Thomas, F. Cellier, and G. Donias, "DIONISOS. An end-to-end SAR simulator," Proc. EuSAR, 677-680, 2010.

6. Mametsa, H. J., F. Rouas, A. Berges, and J. Latger, "Imaging radar simulation in realistic environment using shooting and bouncing rays technique," Proc. SPIE, SAR Image Analysis, Modeling and Techniques IV, 34-40, 2001.

7. Margarit, G., J. J. Mallorqui, J. M. Rius, and J. Sanz-Marcos, "On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 12, 3517-3526, 2006.
doi:10.1109/TGRS.2006.881120

8. Hammer, H., T. Balz, E. Cadario, U. Soergel, U. Thoennessen, and U. Stilla, "Comparison of SAR simulation concepts for the analysis of high resolution SAR data," Proc. EuSAR, 2008.

9. Anglberger, H., R. Speck, T. Kampf, and H. Suess, "Fast ISAR image generation through localization of persistent scattering centers," Proc. SPIE Defence, Security and Sensing, 2009.

10. Auer, S., S. Hinz, and R. Bamler, "Ray-tracing simulation techniques for understanding highresolution SAR images," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1445-1456, 2010.
doi:10.1109/TGRS.2009.2029339

11. Brunner, D., G. Lemoine, H. Greidanus, and L. Bruzzone, "Radar imaging simulation for urban structures," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 1, 68-72, 2011.
doi:10.1109/LGRS.2010.2051214

12. Smolarczyk, M., "Radar signal simulator for SAR algorithms tests," Proc. International Radar Symposium, 509-513, Dresden, Germany, 2003.

13. Kulpa, K., M. Smolarczyk, G. Tanski, A. Gromek, and P. Jobkiewicz, "Radar signal simulator and its usage for interferometric SAR radars phase unwrapping algorithms test," 15th IEEE Int. Conf., 427-430, MIKON, 2004.

14. Horst, H., K. Silvia, and S. Karsten, "On the use of GIS data for realistic SAR simulation of large urban scenes," IGARSS, 4538-4541, 2015.

15. Liu, B. C. and Y. J. He, "SAR raw data simulation for ocean scenes using inverse Omega-K algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 10, 6151-6169, 2016.
doi:10.1109/TGRS.2016.2582525

16. Blacknell, D., A. Freeman, S. Quegan, A. I. Ward, P. I. Finley, H. C. Oliver, G. R. White, and J. W. Wood, "Geometric accuracy in airborne SAR image," IEEE Trans. Aerosp. Electron. Syst., Vol. 25, No. 2, 241-258, 1989.
doi:10.1109/7.18685

17. Oliver, J. C., "Review article — Synthetic aperture radar imaging," Phys. D: Applied Physics, Vol. 22, No. 7, 871-890, 1989.
doi:10.1088/0022-3727/22/7/001

18. Mori, A. and F. De Vita, "A time-domain raw signal simulator for interferometric SAR," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 9, 1811-1817, 2004.
doi:10.1109/TGRS.2004.832242

19. Xu, F. and Y. Jin, "Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 11, 3219-3234, 2006.
doi:10.1109/TGRS.2006.879544

20. Eldhuset, K., "High resolution spaceborne INSAR simulation with extended scenes," Proc. Inst. Elect. Eng.-Radar Sonar Navig., 53-57, 2005.
doi:10.1049/ip-rsn:20045001

21. Khwaja, S. A., L. Ferro-Famil, and E. Pottier, "Efficient SAR raw data generation for anisotropic urban scenes based on inverse processing," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 4, 757-761, 2009.
doi:10.1109/LGRS.2009.2024559

22. Franceschetti, G., M. Miliaccio, D. Riccio, and G. Schirinzi, "SARAS: A SAR raw signal simulator," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 1, 110-123, 1992.
doi:10.1109/36.124221

23. Khwaja, S. A., L. Ferro-Famil, and E. Pottier, "SAR raw data simulation in the frequency domain," Proc. The 3rd European Radar Conferene, 277-280, 2006.
doi:10.1109/EURAD.2006.280328

24. Franceschetti, G., M. Miliaccio, and D. Riccio, "SAR simulation of actual ground sites described in terms of sparse input data," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 6, 1600-1169, 1994.
doi:10.1109/36.338364

25. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "A novel across-track SAR interferometry simulator," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 950-962, 1998.
doi:10.1109/36.673686

26. Franceschetti, G., A. Iodice, S. Perna, and D. Riccio, "SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw data," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2323-2334, 2006.
doi:10.1109/TGRS.2006.873206

27. Franceschetti, G., A. Iodice, S. Perna, and D. Ricco, "Efficient simulation of airborne SAR raw data of extended scenes," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2851-2860, 2006.
doi:10.1109/TGRS.2006.875786

28. Tang, X., M. Xiang, and L. Wei, "SAR raw signal simulation accounting for antenna attitude variations," IGARSS, 613-616, 2009.

29. Vandewal, M., R. Speck, and H. Suß, "Efficient SAR raw data generation including low squint angles and platform instabilities," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 1, 26-30, 2008.
doi:10.1109/LGRS.2007.907419

30. Khwaja, A. S., L. Ferro-Famil, and E. Pottier, "Efficient stripmap SAR raw data generation taking into account sensor trajectory deviations," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 4, 794-798, 2011.
doi:10.1109/LGRS.2011.2111411

31. Franceschetti, G., R. Lanari, and S. Marzouk, "A new two-dimensional squint mode SAR processor," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 2, 854-863, 1996.
doi:10.1109/7.489529

32. Chen, K. S., Principles of Synthetic Aperture Radar --- A System Simulation Approach, CRC Press, 2015.

33. Fornaro, G., "Trajectory deviations in airborne SAR: Analysis and compensation," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 3, 997-1009, 1999.
doi:10.1109/7.784069