Vol. 71
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-11-25
Theoretical Spectral Analysis of the IR-UWB Radar Chest Reflection with Arbitrary Periodic Breathing- and Heart-Induced Displacements
By
Progress In Electromagnetics Research B, Vol. 71, 119-135, 2016
Abstract
The moving chest wall imparts a delay modulation onto the reflected IR-UWB radar signal, making the radar return a nonlinear function of chest wall displacement. Existing theoretical spectral models of the IR-UWB radar reflections from the human chest wall have restrictive assumptions that preclude realistic modeling of chest wall displacement and assume an aliased version of the radar signal. This paper presents novel theoretical analysis of the un-aliased spectrum, without the restrictive assumptions. Potential applications not specifically treated in this paper, but illustrative of the novelty and broader scope of the presented analysis, include heart-induced displacements that are realistically more bursty in nature and breathing-induced displacements consistent with, for example, non-unity inspiration-to-expiration ratios characteristic of asthma; neither of these could be analyzed using previous models. As well known, the un-aliased spectrum cannot generally be recovered from the aliased spectrum. In particular, the paper shows that the clusters of the non-aliased spectrum are not just scaled versions of each other; rather they have complex variations that if measurable, could enable estimation of parameters such as displacement amplitude; such variations are not apparent in the existing aliased spectrum model, which has just one cluster. This paper analyzes the degree to which the aliased model di↵ers from the non-aliased model. The paper also addresses some practical aspects of the spectral model, such as the number of significant components in a spectral cluster and computational complexity of the theoretical model.
Citation
Van Nguyen, and Mary Ann Weitnauer, "Theoretical Spectral Analysis of the IR-UWB Radar Chest Reflection with Arbitrary Periodic Breathing- and Heart-Induced Displacements," Progress In Electromagnetics Research B, Vol. 71, 119-135, 2016.
doi:10.2528/PIERB16091801
References

1. Li, W. Z., Z. Li, H. Lv, G. Lu, Y. Zhang, X. Jing, S. Li, and J. Wang, "A new method for non-lineof-sight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar," Progress In Electromagnetics Research, Vol. 133, 535-554, 2013.
doi:10.2528/PIER12093002

2. Li, Y., X. Jing, H. Lv, and J. Wang, "Analysis of characteristics of two close stationary human targets detected by impulse radio UWB radar," Progress In Electromagnetics Research, Vol. 126, 429-447, 2012.
doi:10.2528/PIER12011908

3. Li, J., et al., "Through-wall detection of human being's movement by UWB radar," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 6, 1079-1083, 2012.
doi:10.1109/LGRS.2012.2190707

4. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

5. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

6. Conceicao, R. C., M. O’Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407

7. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202

8. Nguyen, V., A. Javaid, and M. A. Weitnauer, "Detection of motion and posture change using an IR-UWB radar," IEEE Int. Conf. Eng. Medicine and Biology Society (EMBC), 2016.

9. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmud, and Z. Awang, "3d experimental detection and discrimination of malignant and benign breast tumor using nn-based UWB imaging system," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.
doi:10.2528/PIER11022601

10. Xu, Y., S. Dai, S. Wu, J. Chen, and G. Fang, "Vital sign detection method based on multiple higher order cumulant for ultrawideband radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 4, 1254-1265, 2012.
doi:10.1109/TGRS.2011.2164928

11. Lai, J. C., et al., "Wireless sensing of human respiratory parameters by low-power ultrawideband impulse radio radar," IEEE Trans. on Instrumentation and Measurement, Vol. 60, No. 3, 928-938, 2011.
doi:10.1109/TIM.2010.2064370

12. Nguyen, V., A. Q. Javaid, and M. A.Weitnauer, "Harmonic Path (HAPA) algorithm for noncontact vital signs monitoring with IR-UWB radar," IEEE Biomedical Circuits and Systems Conference (BioCAS), 146-149, 2013.
doi:10.1109/BioCAS.2013.6679660

13. Nguyen, V., A. Javaid, and M. A. Weitnauer, "Spectrum-averaged Harmonic Path (SHAPA) algorithm for non-contact vital sign monitoring with Ultra-Wideband (UWB) radar," IEEE International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2241-2244, 2014.

14. Venkatesh, S., et al., "Implementation and analysis of respiration-rate estimation using impulsebased UWB," IEEE Mil. Comm. Conf., 3314-3320, 2005.

15. Mabrouk, M., et al., "Model of human breathing re ected signal received by PN-UWB radar," IEEE International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4559-4562, 2014.

16. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

17. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetics Research M, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206

18. Li, C., J. Ling, J. Li, and J. Lin, "Accurate doppler radar noncontact vital sign detection using the relax algorithm," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 3, 687-695, 2010.
doi:10.1109/TIM.2009.2025986

19. Zakrzewski, M., A. Vehkaoja, A. S. Joutsen, K. T. Palovuori, and J. J. Vanhala, "Noncontact respiration monitoring during sleep with microwave doppler radar," IEEE Sensors Journal, Vol. 15, No. 10, 5683-5693, 2015.
doi:10.1109/JSEN.2015.2446616

20. Pozar, D. M., "Waveform optimizations for ultrawideband radio systems," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2335-2345, 2003.
doi:10.1109/TAP.2003.816313

21. Staderini, E. M., "UWB radars in medicine," IEEE Aerospace and Electronic Systems Magazine, Vol. 17, No. 1, 13-18, 2002.
doi:10.1109/62.978359

22. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842

23. Poletti, M. A., "Three-dimensional surround sound systems based on spherical harmonics," Journal of the Audio Engineering Society, Vol. 53, No. 11, 1004-1025, 2005.

24. Kay, S. M., Fundamentals of Statistical Signal Processing: Practical Algorithm Development, Vol. 3, Pearson Education, 2013.

25. Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for onne nonlinear/non-gaussian bayesian tracking," IEEE Transactions on Signal Processing, Vol. 50, No. 2, 174-188, 2002.
doi:10.1109/78.978374

26. Lai, Y. and Y. Fu, Method and system for reliable inspiration-to-expiration ratio extraction from acoustic physiological signal, US Patent App. 12/800,932, Dec. 1, 2011.

27. Pandia, K., O. T. Inan, G. T. Kovacs, and L. Giovangrandi, "Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer," Physiological Measurement, Vol. 33, No. 10, 1643, 2012.
doi:10.1088/0967-3334/33/10/1643

28. Thompson, W. B., M. B. Rappaport, and H. B. Sprague, "Ballistocardiography ii. The normal ballistocardiogram," Circulation, Vol. 7, No. 3, 321-328, 1953.
doi:10.1161/01.CIR.7.3.321

29. Oppenheim, A. V. and R. W. Schafer, Discrete-time Signal Processing, Pearson, 2010.

30. Foo, S., Ultra wideband monitoring systems and antennas, US Patent 8,428,696, Apr. 23, 2013.

31. Nguyen, V. and M. A. Weitnauer, "UWB impulse radar for vital signs sensing — A modeling framework for arbitrary periodic heart and lung motion," IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.

32. Staderini, E. M. and G. Varotto, "Optimization criteria in the design of medical UWB radars in compliance with the regulatory masks," IEEE Biomedical Circuits and Systems Conference (BioCAS), 53-58, 2007.

33. Fontana, R. J., "Recent system applications of short-pulse ultra-wideband (UWB) technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2087-2104, 2004.
doi:10.1109/TMTT.2004.834186

34. Hu, B. and N. C. Beaulieu, "Pulse shapes for ultrawideband communication systems," IEEE Transactions on Wireless Communications, Vol. 4, No. 4, 1789-1797, 2005.
doi:10.1109/TWC.2005.850311

35. Schwartz, C., "Numerical calculation of bessel functions," International Journal of Modern Physics C, Vol. 23, No. 12, 1250084, 2012.
doi:10.1142/S0129183112500842

36. Du Toit, C. F., "The numerical computation of bessel functions of the first and second kind for integer orders and complex arguments," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 9, 1341-1349, 1990.
doi:10.1109/8.56985

37. Barry, J. R., E. A. Lee, and D. G. Messerschmitt, Digital Communication, Springer Science & Business Media, 2004.
doi:10.1007/978-1-4615-0227-2

38. Immoreev, I. Y., "Practical applications of UWB technology," IEEE Aerospace and Electronic Systems Magazine, Vol. 25, No. 2, 36-42, 2010.
doi:10.1109/MAES.2010.5442175

39. Hsieh, C.-H., Y.-F. Chiu, Y.-H. Shen, T.-S. Chu, and Y.-H. Huang, "A UWB radar signal processing platform for real-time human respiratory feature extraction based on four-segment linear waveform model," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 1, 219-230, 2016.
doi:10.1109/TBCAS.2014.2376956

40. Pittella, E., S. Pisa, and M. Cavagnaro, "Breath activity monitoring with wearable UWB radars: Measurement and analysis of the pulses reflected by the human body," IEEE Transactions on Bio-medical Engineering, 2015.