Vol. 54
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-02
Polyvinyl-Alcohol (Pva)-Based RF Humidity Sensor in Microwave Frequency
By
Progress In Electromagnetics Research B, Vol. 54, 149-166, 2013
Abstract
A highly sensitive, passive relative humidity (RH) sensor using polyvinyl-alcohol (PVA) dielectric film is presented. For the first time, PVA is investigated in microwave RF sensing devices for low cost, high resolution and accurate chipless RH sensor realization. Comparative study with traditional humidity sensing Kapton polymer is presented to validate superior performance of PVA film. Results are presented for two different passive high Q resonators to validate sensing performance in wide applications. Moreover, a new sensing parameter is described to investigate sensitivity measurement through resonance frequency and Q factor variation. The RH sensor has the potential to be integrated with mm and μm-wave high frequency passive RFID for ubiquitous sensing.
Citation
Emran Md Amin, Nemai C. Karmakar, and Bjorn Winther-Jensen, "Polyvinyl-Alcohol (Pva)-Based RF Humidity Sensor in Microwave Frequency," Progress In Electromagnetics Research B, Vol. 54, 149-166, 2013.
doi:10.2528/PIERB13061716
References

1. Traversa, E., "Ceramic sensors for humidity detection: The state-of-the-art and future developments," Sensors and Actuators B: Chemical, Vol. 23, 135-156, 1995.
doi:10.1016/0925-4005(94)01268-M

2. Sakai, Y., et al., "Humidity sensors based on polymer thin films," Sensors and Actuators B: Chemical, Vol. 35, 85-90, 1996.
doi:10.1016/S0925-4005(96)02019-9

3. Ansbacher, F. and A. C. Jason, "Effects of water vapour on the electrical properties of anodized aluminium," Nature, Vol. 171, 177-178, 1953.
doi:10.1038/171177b0

4. Chen, Z., et al., "Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics," Sensors and Actuators B: Chemical, Vol. 2, 167-171, 1990.
doi:10.1016/0925-4005(90)85001-F

5. Rittersma, Z. M., et al., "A novel surface-micromachined capacitive porous silicon humidity sensor," Sensors and Actuators B: Chemical, Vol. 68, 210-217, 2000.
doi:10.1016/S0925-4005(00)00431-7

6. Harpster, T. J., et al., "A passive wireless integrated humidity sensor," Sensors and Actuators A: Physical, Vol. 95, 100-107, 2002.
doi:10.1016/S0924-4247(01)00720-8

7. Yang, M.-R. and K.-S. Chen, "Humidity sensors using polyvinyl alcohol mixed with electrolytes," Sensors and Actuators B: Chemical, Vol. 49, 240-247, 1998.
doi:10.1016/S0925-4005(98)00134-8

8. Penza, M. and G. Cassano, "Relative humidity sensing by PVA-coated dual resonator SAW oscillator," Sensors and Actuators B: Chemical, Vol. 68, 300-306, 2000.
doi:10.1016/S0925-4005(00)00448-2

9. Chen, Y. T. and H. L. Kao, "Humidity sensors made on polyvinyl-alcohol film coated saw devices," Electronics Letters, Vol. 42, 948-949, 2006.
doi:10.1049/el:20061216

10. Sengwa, R. J. and K. Kaur, "Dielectric dispersion studies of poly (vinyl alcohol) in aqueous solutions," Polymer International, Vol. 49, 1314-1320, 2000.
doi:10.1002/1097-0126(200011)49:11<1314::AID-PI479>3.0.CO;2-8

11. Amin, E. M. and N. C. Karmakar, "Development of a low cost printable humidity sensor for chipless RFID technology," 2012 IEEE International Conference on RFID-technologies and Applications (RFID-TA), 165-170, 2012.
doi:10.1109/RFID-TA.2012.6404504

12. Amin, E. M., et al., "Towards an intelligent EM barcode," 2012 7th International Conference on Electrical & Computer Engineering (ICECE), 826-829, 2012.
doi:10.1109/ICECE.2012.6471678

13. Girbau, D., et al., "Passive wireless temperature sensor based on time-coded UWB chipless RFID tags," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3623-3632, 2012.
doi:10.1109/TMTT.2012.2213838

14. Virtanen, J., et al., "Inkjet-printed humidity sensor for passive UHF RFID systems," IEEE Transactions on Instrumentation and Measurement, Vol. 60, 2768-2777, 2011.
doi:10.1109/TIM.2011.2130070

15. Chen, Z. and C. Lu, "Humidity sensors: A review of materials and mechanisms," Sensor Letters, Vol. 3, 2005.
doi:10.1166/sl.2005.045

16. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley, 2001.

17. Gevorgian, S., et al., "CAD models for shielded multilayered CPW," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 772-779, 1995.
doi:10.1109/22.375223

18. Ogura, K., et al., "The humidity dependence of the electrical conductivity of a solublepolyaniline-poly (vinyl alcohol) composite film," Journal of Materials Chemistry, Vol. 7, 2363-2366, 1997.
doi:10.1039/a705463g

19. Sagawa, M., et al. "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 1078-1085, 1997.
doi:10.1109/22.598444

20. Zhang, H. and K. J. Chen, "A tri-section stepped-impedance resonator for cross-coupled bandpass filters," IEEE Microwave and Wireless Components Letters, Vol. 15, 401-403, 2005.
doi:10.1109/LMWC.2005.850475

21. Zhang, H. and K. J. Chen, "Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1090-1095, 2006.
doi:10.1109/TMTT.2005.864126

22. Schurig, D., et al., "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, 041109, 2006.
doi:10.1063/1.2166681

23. Yeow, Y. K., K. Khalid, and M. Z. A. Rahman, "Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies," American Journal of Applied Sciences, 2010.

24. Ralston, A. R. K., et al., "A model for the relative environmental stability of a series of polyimide capacitance humidity sensors," The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers'95, 821-824, 1995.
doi:10.1109/SENSOR.1995.721965