Vol. 50
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-02
Detailed Study of Millimeter Wave EBG Guide: Broadbanding Techniques, Modal Structure, and Crosstalk Behavior
By
Progress In Electromagnetics Research B, Vol. 50, 141-156, 2013
Abstract
An electromagnetic band gap (EBG) waveguide using holes drilled in a dielectric substrate is investigated in this paper. A broadbanding technique is suggested and implemented through a detailed study of the modal behaviour of the guiding structure. The stop band of the EBG waveguide was adjusted by changing the width of the waveguide to increase its bandwidth. It is shown that the propagating mode is a quasi-TEM by examining the dispersion properties of the propagating mode. An EBG waveguide of 49.1 mm (equivalent to 19 EBG cells) was designed and fabricated. The simulation results show better than -10dB return loss performance from 27 GHz to 31.5 GHz with insertion loss of better than 2.5 dB over the same bandwidth, and also high isolation in the range of -20 dB with an adjacent similar EBG waveguide. There is a good agreement between the measured data and simulation results. A microstrip line was also fabricated and used as a benchmark for comparison with the designed EBG waveguide. The group velocity of this waveguide is nearly constant across its operating frequency band which implies low frequency dispersion and is also a confirmation of the quasi-TEM nature of the EBG fundamental mode. Also, using the physical insight gained from a careful study of the EBG guide, a simple method is suggested for the calculation of the dispersion characteristic of its fundamental mode.
Citation
Yaser Sherif Abdo, Mohammad Reza Chaharmir, Jafar Shaker, and Yahia M. Antar, "Detailed Study of Millimeter Wave EBG Guide: Broadbanding Techniques, Modal Structure, and Crosstalk Behavior," Progress In Electromagnetics Research B, Vol. 50, 141-156, 2013.
doi:10.2528/PIERB13022010
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press , Princeton, NJ, , 1995.

2. Zhu, , S., R. Langley, and , "Dual-band wearable antennas over EBG substrate," Electronic Letters, Vol. 43, No. 3, 141-142, Feb. 2007.
doi:10.1049/el:20073151

3. Radisic, , V., Y. Qian, and T. Itoh, "Broadband power amplifier using dielectric photonic bandgap structure," IEEE Microwave Guided Wave Lett., Vol. 8, 13-14, Jan. 1998.
doi:10.1109/75.650973

4. Sharkawy, , A., S. Shi, and D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides," Optics Express , Vol. 10, No. 20, 1048-1059, 2002.
doi:10.1364/OE.10.001048

5. Thorhauge, , M., L. H. Frandsen, and P. I. Borel, "Effcient photonic crystal directional couplers," Optics Letters, Vol. 28, No. 17, 1525-1527, 2003.
doi:10.1364/OL.28.001525

6. Niemi, , T., L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, "Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photonics Tech. Letters, Vol. 18, No. 1, 226-228, 2006.
doi:10.1109/LPT.2005.860001

7. Chien, , F. S. S., Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, "Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides," Optics Express, Vol. 12, No. 6, 1119-1125, 2004.
doi:10.1364/OPEX.12.001119

8. Frandsen, , L. H., et al., "Ultralow-loss 3-dB photonic crystal waveguide splitter," Optics Letters, Vol. 29,14, 1623-1625, 2004.
doi:10.1364/OL.29.001623

9. Johnson, , S. G., P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Physical Review B, Vol. 62, 8212-8222, 2000.
doi:10.1103/PhysRevB.62.8212

10. Suntives, , A. and R. Abhari, "Characterization of interconnects formed in electromagnetic bandgap substrates," 9th IEEE Workshop on Signal Propagation on Interconnects,, 75-78, 2005.

11. Abdo, , Y. S. E., M. R. Chaharmir, J. Shaker, and Y. M. M. Antar, "E±cient excitation of an EBG guide exploiting the partial bandgap of a triangular lattice of holes," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 167-170, 2010.
doi:10.1109/LAWP.2010.2044474

12. Falcone, , F., T. Lopetegi, M. A. G. Laso, and M. Sorolla, "Novel photonic crystal waveguide in microwave printed circuit technology," Microwave and Optical Technology Letters, Vol. 34, No. 6, 462- 466, Sep. 2002.
doi:10.1002/mop.10496

13. Gonzalo, , R., I. Ederra, B. Martinez, and P. de Maagt, "Electromagnetic crystal technology for waveguides and bends at microwave frequencies," Electronic Letters, Vol. 41, No. 7, 421-422, Mar. 2005.
doi:10.1049/el:20057864

14. "CST StudioTM Suite 2008," 2008.

15. Adibi, , A., Y. Xu, R. K. Lee, and A. Yariv, "Properties of the slab modes in photonic crystal optical waveguides," Journal of Lightwave Technology , Vol. 18, No. 11, 1554-1564, Nov. 2000.
doi:10.1109/50.896217

16. Olivier, , S., M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdre, "Mini stopbands of a one dimensional system: The channel waveguide in a two-dimensional photonic crystal," Physical Review B, Vol. 63, 113311, 2001.
doi:10.1103/PhysRevB.63.113311

17. Deslandes, , D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave Wireless Compon.Lett., Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305

18. Pozar, D. M., Microwave Engineering, Addison-Wesley Publishing Company, 1990.

19. Gagnon, , N., A. Ittipiboon, and A. Petosa, "Operation of a periodic structure for a microstrip line over a large frequency band," ANTEM/URSI, , 389-392, Jul. 2004.

20. Anritsu, , K., "V connector tips," Anritsu Company, 2003.

21. Rogers, "RT/duroid 6006/6010LM High Frequency Laminates Data Sheet.,".

22. Birbir, , F., J. Shaker, and Y. M. M. Antar, "Chebishev bandpass spatial filter composed of strip gratings," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3707-3713, 2008.
doi:10.1109/TAP.2008.2007286