Vol. 49
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-02-12
Modeling the Dynamic Electromechanical Suspension Behavior of an Electrodynamic Eddy Current Maglev Device
By
Progress In Electromagnetics Research B, Vol. 49, 1-30, 2013
Abstract
A 2-D analytic based eddy-current transient model for a conducting plate is derived that is capable of accounting for continuous changes in the input conditions. Only the source field on the surface of the conducting plate needs to be known. In addition, a 2-D steady-state analytic based eddy-current model that is capable of accounting for frequency and velocity changes in two directions is derived. Both analytic based models have been validated using finite element code. The transient and steady-state models are integrated into an electromechanical system where the magnetic source is a Halbach rotor. The accuracy of both calculation methods is compared. The stiffness and damping coefficients are derived using the steady-state model.
Citation
Nirmal Paudel, and Jonathan Z. Bird, "Modeling the Dynamic Electromechanical Suspension Behavior of an Electrodynamic Eddy Current Maglev Device," Progress In Electromagnetics Research B, Vol. 49, 1-30, 2013.
doi:10.2528/PIERB12121115
References

1. Bohn, G. H. and G. Steinmetz, "The electromagnetic levitation and guidance technology of the `transrapid' test facility Emsland," IEEE Transactions on Magnetics, Vol. 20, No. 5, 1666-1671, Sep. 1984.
doi:10.1109/TMAG.1984.1063246

2. Davey, K. R., "Designing with null flux coils," IEEE Transactions on Magnetics, Vol. 33, No. 5, 4327-4334, Sep. 1997.
doi:10.1109/20.620442

3. Karoly, K., M. K. Volus, and K. Robert, "Design considerations for the hunting and braking performance of Maglev vehicle utilizing permanent magnet EDS levitation system," MAGLEV 2006, 363-370, Dresden, Germany, 2006.

4. Bird, J. and T. A. Lipo, "Characteristics of an electrodynamic wheel using a 2-D steady-state model," IEEE Transactions on Magnetics, Vol. 43, 3395-3405, Aug. 2007.
doi:10.1109/TMAG.2007.900572

5. Bird, J. and T. A. Lipo, "Calculating the forces created by an electrodynamic wheel using a 2D steady-state finite element model," IEEE Transactions on Magnetics, Vol. 44, No. 3, 365-372, Mar. 2008.
doi:10.1109/TMAG.2007.913038

6. Halbach, K., "Design of permanent multipole magnets with oriented rare earth cobalt material," Nucl. Instr. and Meth., Vol. 187, 1-10, 1980.
doi:10.1016/0029-554X(80)90094-4

7. Shute, H. A., J. C. Mallinson, D. T. Wilton, and D. J. Mapps, "One-sided °uxes in planar, cylindrical, and spherical magnetized structures," IEEE Transactions on Magnetics, Vol. 36, No. 2, 440-451, 2000.
doi:10.1109/20.825805

8. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
doi:10.2528/PIERB09012004

9. Rote, D. M. and Y. Cai, "Review of dynamic stability of repulsive-force maglev suspension systems," IEEE Transactions on Magnetics, Vol. 38, No. 2, 1383-1390, Mar. 2002.
doi:10.1109/20.996030

10. Davis, L. C. and D. F. Wilkie, "Analysis of motion of magnetic levitation systems: Implications for high-speed vehicles," Jour. of Appl. Phy., Vol. 42, No. 12, 4779-4793, Nov. 1971.
doi:10.1063/1.1659855

11. Baiko, A. V., K. E. Voevodskii, and V. M. Kochetkov, "Vertical unstable stability of electrodynamic suspension of high speed ground transport," Cryogenics, Vol. 20, No. 5, 271-276, May 1980.
doi:10.1016/0011-2275(80)90052-1

12. Yoshida, K. and M. Takakura, "Magnetic damping and stiffness coefficients in superconducting maglev system with sheet guideways," Electr. Eng. Japan, Vol. 99, No. 12, 797-804, 1979.

13. Urankar, L., "Intrinsic damping in basic magnetic levitation systems with a continuous sheet track," Siemens Forschungs and Entwicklungsberichte, Vol. 5, No. 2, 110-119, 1996.

14. Yamada, T., M. Iwamoto, and T. Ito, "Magnetic damping force in inductive magnetic levitation system for high-speed trains," Electr. Eng. Japan, Vol. 94, No. 1, 49-54, 1974.
doi:10.1002/eej.4390940112

15. Iwamoto, M., T. Yamada, and E. Ohno, "Magnetic damping force in electrodynamically suspended trains," IEEE Transactions on Magnetics, Vol. 10, No. 3, 458-461, 1974.
doi:10.1109/TMAG.1974.1058446

16. Fujiwara, S., "Damping characteristics of the repulsive magnetic levitation vehicle," Japanese Railway Technial Res. Inst., Quart. Rep., Vol. 21, No. 1, 49-52, 1980.

17. Higashi, , K., S. Ohashi, H. Ohsaki, E. Masada, "Magnetic damping of the electrodynamic suspension-type superconducting levitation system," Electr. Eng. Japan, Vol. 127, No. 2, 1015-1023, 1999.
doi:10.1002/(SICI)1520-6416(19990430)127:2<49::AID-EEJ7>3.0.CO;2-X

18. Ooi, B. T., "Electromechanical stiffness and damping coefficients in the repulsive magnetic levitation system," IEEE Trans. Power App. Syst., Vol. 95, No. 3, 936-943, May-Jun. 1976.

19. Takano, I. and H. Ogiwara, "Magnetic damping characteristics of magnetically suspended ultrahigh-speed vehicles," Electr. Eng. Japan, Vol. 98, No. 5, 14-23, Sep. 1978.
doi:10.1002/eej.4390980503

20. Kratki, N. and K. Oberretl, "Ausgleichsvorgiinge und schwingungen beim elektrodynamischen magnetkissen-system," Archiv fur Elektrotechnik, Vol. 57, 59-64, 1975.
doi:10.1007/BF01407654

21. He, J. L. and H. T. Coffey, "Magnetic daming forces in figure-eight-shaped null-flux coil suspension systems," IEEE Transactions on Magnetics, Vol. 33, No. 5, 4230-4232, Sep. 1997.
doi:10.1109/20.619719

22. Zhu, S., Y. Cai, D. M. Rote, and S. S. Chen, "Magnetic damping for maglev," Shock and Vibration, Vol. 5, 119-128, 1998.

23. Smythe, W. R., Static & Dynamic Electricity, 5th Ed., 1989.

24. Bird, J. and T. A. Lipo, "Modeling the 3-D rotational and translational motion of a Halbach rotor above a split-sheet guideway," IEEE Transactions on Magnetics, Vol. 45, No. 9, 3233-3242, Sep. 2009.
doi:10.1109/TMAG.2009.2021160

25. Goldstein, H., C. Poole, and J. Safko, Classical Mechanics, 2002.

26. Paudel, N. and J. Z. Bird, "General 2D steady-state force and power equations for a traveling time-varying magnetic source above a conductive plate," IEEE Transactions on Magnetics, Vol. 48, No. 1, 95-100, Jan. 2012.
doi:10.1109/TMAG.2011.2161638

27. Sankaran, R., K. P. P. Pillai, and D. A. Muraleedharan, "Transient performance of linear induction machines following reconnection of supply," Proc. IEE, Vol. 126, No. 10, 979-983, 1979.

28. Paudel, N., J. Z. Bird, S. Paul, and D. Bobba, "Modeling the dynamic suspension behavior of an eddy current device," Energy Conversion Congress and Exposition (ECCE), 1692-1699, 2011.

29. Yamamura, S., Theory of Linear Induction Motors, University of Tokyo Press, 1979.

30. Rodger, D. and J. F. Eastham, "Dynamic behavior of linear induction machines in the heave mode," IEE Trans. Vehicular Technology, Vol. 31, No. 2, 1982.

31. Paudel, N., S. Paul, and J. Z. Bird, "General 2-D transient eddy current force equations for a magnetic source moving above a conductive plate," Progress In Electromagnetics Research B, Vol. 43, 255-277, 2012.

32. Rodger, D., P. J. Leonard, and . Karaguler, "An optimal formulation for 3D moving conductor eddy current problems with smooth rotors," IEEE Transactions on Magnetics, Vol. 26, 2359-2363, Sep. 1990.
doi:10.1109/20.104731

33. Paudel, N., "Dynamic suspension modeling of an eddy-current device: An application to MAGLEV,", Ph.D. Thesis, Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, 2012.

34. Polyanin, A. D. and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall, 2007.

35. Freeman, E. M. and C. Papageorgiou, "Spatial Fourier transforms: A new view of end effects in linear induction motors," Proc. IEE, Vol. 125, No. 8, 747-753, Aug. 1978.

36. Rao, S. S., Mechanical Vibrations, 2nd Ed., Addison-Wesley, Reading, Massachusetts, 1990.

37. Xia, Z. P., Z. Q. Zhu, and D. Howe, "Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines," IEEE Transactions on Magnetics, Vol. 40, No. 4, 1864-1872, Jul. 2004.
doi:10.1109/TMAG.2004.828933

38. Atallah, K., D. Howe, P. H. Mellor, and D. A. Stone, "Rotor loss in permanent-magnet brushless AC machines," IEEE Trans. Ind. Appl., Vol. 36, No. 6, 1612-1618, Nov.-Dec. 2000.
doi:10.1109/28.887213

39. Zhu, S., Y. Cai, D. M. Rote, and S. S. Chen, "Magnetic damping for maglev,", ANL/ET/CP-82419, CONF-9411194-2, Energy Technology Division, Argonne National Laboratory, 1995.

40. Gillespire, T. D., Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, Inc., 1992.

41. Moon, F. C., "Superconducting Levitation: Applications to Bearings and Magnetic Transportation," WILEY-VCH Verlag GmbH & Co. KGaA, 2004.

42. Brown, J. W. and R. V. Churchill, Complex Variables and Applications, 6th Ed., McGraw-Hill Inc., New York, 1996.

43. Earnshaw, S., "On the nature of the molecular forces which regulate the constitution of the luminferous ether," Transactions Camb. Phil. Soc., Vol. 7, 97-112, 1842.

44. Di Puccio, F., A. Musolino, R. Rizzo, and E. Tripodi, "A self-controlled maglev system," Progress In Electromagnetics Research M, Vol. 26, 187-203, 2012.

45. Di Puccio, F., R. Bassani, E. Ciulli, A. Musolino, and R. Rizzo, "Permanent magnet bearings: Analysis of plane and axisymmetric V-shaed element design," Progress In Electromagnetics Research M, Vol. 26, 205-223, 2012.

46. Post, R. F. and D. D. Ryutov, "Ambient-temperature passive magnetic bearings: Theory and design equations," 6th International Symposium on Magnetic Bearings, Cambridge, Massachusetts, 1998.

47. Higashi, K., S. Ohashi, H. Ohsaki, and E. Masada, "Damping mechanism of the superconducting electrodynamic suspension system," Nonlinear Electromagnetic Systems: Proceedings of the International IOS Press, 1996.