Vol. 46
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-11-30
Simulation of the Bearing Voltage in an Inverter-Fed Induction Motor by a Full Three Phase Multi Conductor Transmission Line Model
By
Progress In Electromagnetics Research B, Vol. 46, 233-250, 2013
Abstract
An accurate numerical model, based on multiconductor transmission lines (MTL) able to evaluate the voltage dynamics across the motor bearings and associated currents of an inverter-fed motor is presented. A full three phase stator winding of the wound type of a high power traction motor is considered in the proposed analysis. The different regions of the motor are modeled as suitable connections of lossy MTL which are then studied in the time domain. The per unit length characteristic matrices describing the MTL are accurately calculated by a FEM based software. The effects of the rise time of the input voltage and the length of the feeder cables are discussed. The reliability of the numerical results achieved by means of the MTL model is checked by performing a comparison with those obtained by considering a lumped parameter equivalent circuit.
Citation
Biagio De Vivo, Patrizia Lamberti, Vincenzo Tucci, and Carlo Petrarca, "Simulation of the Bearing Voltage in an Inverter-Fed Induction Motor by a Full Three Phase Multi Conductor Transmission Line Model," Progress In Electromagnetics Research B, Vol. 46, 233-250, 2013.
doi:10.2528/PIERB12090605
References

1. Bonnett, A. H., "Analysis of the impact of pulse-width modulated inverter voltage waveforms on AC induction motors," IEEE Trans. on Industry Applications, Vol. 32, 386-392, 1996.
doi:10.1109/28.491488

2. Kaufhold, M., H. Auinger, M. Berth, J. Speck, and M. Eberhardt, "Electrical stress and failure mechanism of the winding insulation in PWM-inverter-fed low-voltage induction motors," IEEE Trans. on Industrial Electronics, Vol. 47, No. 2, 396-402, 2000.
doi:10.1109/41.836355

3. Cavallini, A., D. Fabiani, and G. C. Montanari, "Power electronics and electrical insulation systems --- Part 1: Phenomenology overview," IEEE Electrical Insulation Magazine, Vol. 26, No. 3, 7-15, 2010.
doi:10.1109/MEI.2010.5482783

4. Melfi, M., A. M. J. Sung, S. Bell, and G. L. Skibinski, "Effect of surge voltage risetime on the insulation of low-voltage machines fed by PWM converters," IEEE Trans. on Industry Applications, Vol. 34, 766-775, 1998.
doi:10.1109/28.703971

5. Lipo, T. A., G. Venkataramanan, and S. Bernet, "High-frequency modeling for cable and induction motor overvoltage studies in long cable drives," IEEE Trans. on Industry Applications, Vol. 38, No. 5, 1297-1306, 2002.
doi:10.1109/TIA.2002.802920

6. Lupµo, G., C. Petrarca, V. Tucci, and M. Vitelli, "Multiconductor transmission line analysis of steep-front surges in machine windings," IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 9, No. 3, 467-478, 2000.
doi:10.1109/TDEI.2002.1007711

7. Haq, S. U., S. H. Jayaram, and E. A. Cherney, "Evaluation of medium voltage enameled wire exposed to fast repetitive voltage pulses," IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 14, No. 1, 194-203, 2007.
doi:10.1109/TDEI.2007.302888

8. Zhang, P., Y. Du, T. G. Habetler, and B. Lu, "A survey of condition monitoring and protection methods for medium-voltage induction motors," IEEE Trans. on Industry Applications, Vol. 47, No. 1, 34-46, 2011.
doi:10.1109/TIA.2010.2090839

9. Muetze, A., "Thousands of hits: On inverter-induced bearing currents, related work, and the literature," Elektrotechnik & Informationstechnik, Vol. 128, No. 11-12, 382-388, 2011.
doi:10.1007/s00502-011-0053-1

10. Muetze, A. and A. Binder, "Techniques for measurement of parameters related to inverter-induced bearing currents," IEEE Trans. on Industry Applications, Vol. 43, No. 5, 1274-1283, 2007.
doi:10.1109/TIA.2007.904413

11. Muetze, A. and A. Binder, "Scaling effects of inverter-induced bearing currents in AC machines," IEEE Trans. on Industry Applications, Vol. 44, No. 4, 965-972, 2008.

12. Muetze, A. and A. Binder, "Calculation of circulating bearing currents in machines of inverter-based drive systems," IEEE Trans. on Industrial Electronics, Vol. 54, No. 2, 932-938, 2007.
doi:10.1109/TIE.2007.892001

13. Muetze, A. and A. Binder, "Practical rules for assessment of inverter-induced bearing currents in inverter-fed AC motors up to 500 kW," IEEE Trans. on Industrial Electronics, Vol. 54, No. 3, 1614-1622, 2007.
doi:10.1109/TIE.2007.894698

14. Di Piazza, M. C., A. Ragusa, and G. Vitale, "Power-loss evaluation in CM active EMI filters for bearing current suppression," IEEE Trans. on Industrial Electronics, Vol. 58, No. 10, 5142-5143, 2011.
doi:10.1109/TIE.2011.2119456

15. Ferreira, F. J. T., M. V. Cistelecan, and A. T. de Almeida, "Evaluation of slot-embedded partial electrostatic shield for high-frequency bearing current mitigation in inverter-fed induction motors," IEEE Trans. on Energy Conversion, Vol. 27, No. 2, 382-390, 2012.
doi:10.1109/TEC.2012.2187452

16. Ahmed, A. S. and G. Skibinski, "Design and analysis of an integrated differential-common mode filter for on site motor bearing problems," 2011 IEEE International Electric Machines & Drives Conference (IEMDC), 283-289, 2011.
doi:10.1109/IEMDC.2011.5994860

17. Naik, R., T. A. Nondhal, M. Melfi, R. Schiferl, and J. Wang, "Circuit model for shaft voltage prediction in induction motors fed by PWM-based AC drives," IEEE Trans. on Industry Applications, Vol. 39, No. 5, 1294-1299, 2003.
doi:10.1109/TIA.2003.816504

18. Wright, M. T., S. J. Yang, and K. McLealy, "General theory of fast-fronted interturn voltage distribution in electrical machine windings," IEE Proceedings B --- Electric Power Applications, Vol. 130, 245-256, 1983.
doi:10.1049/ip-b.1983.0040

19. Guardado, J. L., J. A. Flores, V. Venegas, J. L. Naredo, and F. A. Uribe, "A machine winding model for switching transient studies using network synthesis," IEEE Trans. on Energy Conversion, Vol. 20, No. 2, 322-328, 2005.
doi:10.1109/TEC.2005.845534

20. Petrarca, C., A. Maffucci, V. Tucci, and M. Vitelli, "Analysis of the voltage distribution in a motor stator winding subjected to steep-fronted surge voltages by means of a multiconductorlossy transmission line model," IEEE Trans. on Energy Conversion, Vol. 19, No. 1, 7-17, 2004.
doi:10.1109/TEC.2003.821834

21. De Vivo, B., C. Petrarca, V. Tucci, and M. Vitelli, "A multi conductor transmission line model for the evaluation of the rotor shaft voltages in adjustable speed drive motors," PIERS Proceedings, 236-240, Cambridge, MA, USA, Mar. 26-29, 2006.

22. De Vivo, B., "Valutazione degli effetti prodotti dall'utilizzo di inverter sui cuscinetti di motori da trazione asincroni,", Ph.D. Dissertation, Dept. of Electrical and Computer Eng., University of Salerno, Italy, 2006 (in Italian).

23. Miano, G. and A. Maffucci, "Transmission Lines and Lumped Circuits: Fundamentals and Applications," Academic Press Inc., 2001.

24. Beneduce, L., G. Costabile, B. de Vivo, L. Egiziano, S. Iovieno, A. Masucci, V. Tucci, and M. Vitelli, "An accurate evaluation of electric discharge machining bearings currents in inverter-driven induction motors," European Conf. on Power Electronics and Applications (EPE 2007), 1-8, Aalborg, Denmark, 2007.

25. De Vivo, , B., L. Egiziano, P. Lamberti, and V. Tucci, "Influence of circuit parameters on the electric discharge machining of the bearings of a PWM inverter driver motor," International Symposium on Power Electronics, Electrical Drivers, Automation and Motion (SPEEDAM 2008), 1321-1324, Ischia, Italy, 2008.

26. Adabi, J., A. A. Boora, F. Zare, A. Nami, A. Ghosh, and F. Blaabjerg, "Common-mode voltage reduction in a motor drive system with a power factor correction," IEEE Trans. on Power Electronics, Vol. 5, No. 3, 366-375, 2012.

27. Busse, D., J. Erdman, R. J. Kerkman, D. Schlegel, and G. Skibinski, "Bearing currents and their relationship to PWM drives," IEEE Trans. on Power Electronics, Vol. 12, No. 2, 243-252, 1997.
doi:10.1109/63.558735

28. Muetze, A., J. Tamminen, and J. Ahola, "Influence of motor operating parameters on discharge bearing current activity," IEEE Trans. on Industry Applications, Vol. 47, No. 4, 2011.
doi:10.1109/TIA.2011.2154353