Vol. 44
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-29
Ultra-Wideband Shorted Patch Antennas Fed by Folded-Patch with Multi Resonances
By
Progress In Electromagnetics Research B, Vol. 44, 309-326, 2012
Abstract
Novel designs of probe-fed broadband shorted patch antennas for ultrawideband (UWB) applications are presented in this paper. In these designs, unequal resonance arms fed by a folded patch produce multi resonances to broaden the impedance bandwidth. In the first design, the antenna consists of an asymmetric Eshaped patch, a folded-patch feed and shorting pins. This antenna is achieved by four adjacent resonances with the measured -10 dB impedance bandwidth of 76.18%. The pins are utilized to miniaturize the size of the patch. By introducing a folded ramp-shaped feed in the similar structure with the first design, a wider bandwidth with the five resonances is obtained. This improved design introduces an antenna with an impedance bandwidth of more than 110% and a considerable size reduction compared to the first antenna. The antennas present resonance tuning ability within the impedance bandwidth by varying the length of unequal arms. In addition, parametric studies are performed by investigating the effects of different key parameters on obtaining optimal designs of the proposed antennas.
Citation
Hossein Malekpoor, and Shahrokh Jam, "Ultra-Wideband Shorted Patch Antennas Fed by Folded-Patch with Multi Resonances," Progress In Electromagnetics Research B, Vol. 44, 309-326, 2012.
doi:10.2528/PIERB12081607
References

1. Wei, L.-A., "Applications of ultra wideband,", M.S., The University of Texas at Arlington, Dec. 2006.
doi:10.1002/(SICI)1098-2760(19970620)15:3<147::AID-MOP8>3.0.CO;2-G

2. Wong, K. L., C. L. Tang, and H. T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microw. Opt. Technol. Lett., Vol. 15, No. 3, 147-149, Jun. 1997.

3. Kuo, J. S. and K. L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microw. Opt. Technol. Lett., Vol. 29, 95-97, Apr. 20, 2001.
doi:10.1049/el:19950426

4. Waterhouse, R., "Small microstrip patch antenna," Electron. Lett., Vol. 31, No. 8, 604-605, 1995.
doi:10.1049/ip-map:20010748

5. Wang, Y. J., C. K. Lee, and W. J. Koh, "Single-patch and single-layer square microstrip antenna with 67.5% bandwidth," IEE Proc. Microw. Antennas Propag., Vol. 148, 418-422, 2001.
doi:10.1109/TAP.2009.2039305

6. Quenvedo-Teruel, Q., E. Pucci, and E. Rajo-Iglesias, "Compact loaded PIFA for multifrequency applications," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 656-664, Mar. 2010.
doi:10.2528/PIER10052509

7. Sim, Z. W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve, "Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks," Progress In Electromagnetics Research, Vol. 105, 273-294, 2010.
doi:10.1109/8.29353

8. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE Trans. Antennas Propag., Vol. 37, 677-682, Jun. 1989.
doi:10.1109/8.933489

9. Yang, F., X. X. Zhang, X. N. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1094-1100, Jul. 2001.
doi:10.1109/TAP.2004.836412

10. Ge, Y., K. P. Esselle, and T. S. Bird, "E-shaped patch antennas for high-speed wireless networks," IEEE Trans. Antennas Propag., Vol. 52, 3213-3219, 2004.
doi:10.2528/PIER07061909

11. Ang, B. K. and B. K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER09082302

12. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIERB07112201

13. Khodaei, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB10050402

14. Vedaprabhu, B. and K. J. Vinoy, "An integrated wideband multifunctional antenna using a microstrip patch with two U-slots," Progress In Electromagnetics Research B, Vol. 22, 221-235, 2010.
doi:10.1109/LAWP.2007.900953

15. Elsadek, H. and D. M. Nashaat, "Multiband and UWB V-shaped antenna configuration for wireless communications applications," IEEE Antennas Wireless Propag. Lett., Vol. 7, 89-91, 2008.
doi:10.1109/TAP.2007.901924

16. Matin, M. A., B. S. Sharif, and C. C. Tsimenidis, "Probe fed stacked patch antenna for wideband applications," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2385-2388.

17. Ooi, B. L., S. Qin, and M. S. Leong, "Novel design of broadband stacked patch antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1391-1395, 2002.

18. Guo, Y. X., C. L. Mak, K. M. Luk, and K. F. Lee, "Analysis and design of L-probe proximity fed-patch antennas," IEEE Trans. Antennas Propag., Vol. 49, 145-149, 2001.
doi:10.2528/PIER09080204

19. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
doi:10.1002/mop.1111

20. Kuo, J. S. and K. L. Wong, "A low-cost microstrip-line-fed shorted-patch antenna for a PCS base station," Microw. Opt. Technol. Lett., Vol. 29, No. 3, 146-147, 2001.

21. Lau, K. L., S. H.Wong, and K. M. Luk, "Wideband folded shorted patch antenna with double L-slots," Electron. Lett., Vol. 43, 515-517, Nov. 2007.
doi:10.1109/LAWP.2006.875280

22. Guha, D. and Y. M. M. Antar, "Circular microstrip patch loaded with balanced shorting pins for improved bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 5, 217-219, Dec. 2006.
doi:10.1109/TAP.2009.2016792

23. Xiong, J., Z. Ying, and S. He, "A broadband low profile patch antenna of compact size with three resonances," IEEE Trans. Antennas Propag., Vol. 57, 1838-1843, 2009.
doi:10.1109/LAWP.2010.2091671

24. Peng, L., C. L. Ruan, and X. H. Wu, "Design and operation of dual/triple-band asymmetric M-shaped microstrip patch antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1069-1072, 2010.
doi:10.1109/LAWP.2003.816636

25. Chiu, C. Y., K. M. Shum, C. H. Chan, and K. M. Luk, "Bandwidth enhancement technique for quarter-wave patch antennas," IEEE Antennas Wireless Propag. Lett., Vol. 2, 130-132, Dec. 2003.
doi:10.1109/LAWP.2004.836579

26. Chiu, C. Y., C. H. Chan, and K. M. Luk, "Study of small wideband patch antenna with double shorting walls," IEEE Antennas Wireless Propag. Lett., Vol. 3, 230-231, Dec. 2004.
doi:10.1049/iet-map:20050255

27. Chiu, C. Y., H. Wong, and C. H. Chan, "Study of small wideband folded-patch-feed antennas," IET Microw. Antennas Propag., Vol. 1, No. 2, 501-505, 2007.
doi:10.1049/iet-map:20080013

28. Naser-Moghadasi, M., A. Dadgarpour, F. Jolani, and B. S. Virdee, "Ultra wideband patch antenna with a novel folded-patch technique," IET Microw. Antennas Propag., Vol. 3, No. 1, 164-170, 2009.
doi:10.1109/8.686766

29. Herscovici, N., "New considerations in the design of microstrip antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 6, 807-811, Jun. 1998.
doi:10.1109/TAP.2008.927549

30. Low, X. N., Z. N. Chen, and W. K. Toh, "Ultrawideband suspended plate antenna with enhanced impedance and radiation performance," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2490-2495, Aug. 2008.