Vol. 42
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-17
Space-Time Adaptive Processing Based on Weighted Regularized Sparse Recovery
By
Progress In Electromagnetics Research B, Vol. 42, 245-262, 2012
Abstract
In this paper, novel space-time adaptive processing algorithms based on sparse recovery (SR-STAP) that utilize weighted l1-norm penalty are proposed to further enforce the sparsity and approximate the original l0-norm. Because the amplitudes of the clutter components from different snapshots are random variables, we design the corresponding weights according to two different ways, i.e., the Capon's spectrum using limited snapshots and the Fourier spectrum using the current snapshot. Moreover, we apply the weighted idea to both the direct data domain (D3) SR-STAP and SR-STAP using multiple snapshots from adjacent target-free range bins. Simulation results illustrate that our proposed algorithms outperform the existing SR-STAP and D3SR-STAP algorithms.
Citation
Zhaocheng Yang, Xiang Li, and Hongqiang Wang, "Space-Time Adaptive Processing Based on Weighted Regularized Sparse Recovery," Progress In Electromagnetics Research B, Vol. 42, 245-262, 2012.
doi:10.2528/PIERB12051804
References

1. Ward, J., "Space-time adaptive processing for airborne radar,", Technical Report 1015, -MIT Lincoln laboratory, Lexington, MAvol, Dec. 1994.

2. Klemm, R., Applications of Space-time Adaptive Processing, The Institution of Electrical Engineers, London, UK, 2004.

3. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, 2003.
doi:10.2528/PIER09101502

4. Gong, Q. Y. and Z. D. Zhu, "Study STAP algorithm on interference target detect under nonhomogeneous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIERL10092705

5. Liu, Y. P. and Q. Wan, "Total difference based partial sparse LCMV beamformer," Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010.
doi:10.2528/PIER08090703

6. Zhang, Y., Q. Wan, and A. M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIERL12010702

7. Yang, M. and G. Zhang, "Compressive sensing based parameter estimation for monostatic MIMO noise radar," Progress In Electromagnetics Research Letters, Vol. 30, 133-143, 2012.

8. Liu, Z., X. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

9. Maria, S. and J. J. Fuchs, "Application of the global matched filter to STAP data an efficient algorithmic approach," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 14-19, 2006.
doi:10.1109/ICASSP.2010.5496219

10. Selesnick, I. W., S. U. Pillai, K. Y. Li, and B. Himed, "Angle-doppler processing using sparse regularization," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2750-2753, 2010.

11. Parker, J. T. and L. C. Potter, "A Bayesian perspective on sparse regularization for STAP post-processing," Proc. IEEE Radar Conf., 1471-1475, May 2010.
doi:10.1109/TAES.2010.5545209

12. Li, J., X. Zhu, P. Stoica, and M. Rangaswamy, "High resolution angle-Doppler imaging for MTI radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 3, 1544-1556, Jul. 2010.

13. Sun, K., H. Zhang, G. Li, H. Meng, and X. Wang, "A novel STAP algorithm using sparse recovery technique," Proc. IGARSS, 336-339, 2009.

14. Yang, Z., Z. Liu, X. Li, and L. Nie, "Performance analysis of STAP algorithms based on fast sparse recovery techniques," Progress In Electromagnetics Research B, Vol. 41, 251-268, 2012.
doi:10.1016/j.sigpro.2011.04.006

15. Sun, K., H. Meng, Y. Wang, and X. Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Process., Vol. 91, No. 9, 2222-2236, 2011.
doi:10.1109/TSP.2011.2172435

16. Yang, Z., R. C. de Lamare, and X. Li, "L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar," IEEE Trans. Signal Process., Vol. 60, No. 2, 674-686, 2012.

17. Yang, Z., R. C. de Lamare, and X. Li, "Sparsity-aware STAP algorithms for airborne radar based on conjugate gradient techniques," Proc. Sensor Signal Process. for Defence Conf., London, UK, 2011.
doi:10.1007/s00041-008-9045-x

18. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Applicat., Vol. 14, No. 5-6, 877-905, 2008.
doi:10.1109/LSP.2012.2183592

19. Xu, X., X. Wei, and Z. Ye, "DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty," IEEE Signal Process. Letters, Vol. 19, No. 3, 155-158, 2012.

20. , , , http://www.stanford.edu/ boyd/cvx.